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A B S T R A C T

Globally, seagrass management and conservation have received increased

attention over the last decade. To date, however, there has been a paucity of

available information specific to New Zealand about seagrass beds as an

ecosystem component and which could be used to assist resource managers in

decision making. This report has been prepared primarily for coastal resource

managers, to assist in the management and conservation of seagrass. It provides

a review of the current state of knowledge in New Zealand, within the context

of international seagrass research. There are some key characteristics that set

New Zealand seagrass habitat apart from many temperate and tropical systems.

In New Zealand, the seagrass flora is represented by one genus, Zostera, in the

family Zosteraceae. Seagrass occurs predominantly intertidally in New Zealand,

although it may extend into the shallow subtidal areas of sheltered estuaries,

and permanently submerged beds of seagrass have been recorded around a

small number of offshore islands. While a lot is known about seagrasses in other

regions, the role that these plants play and just how important they are in

estuarine and coastal ecosystems in New Zealand is less well understood and to

date has been the subject of limited study. The relative importance or

magnitude of the multiple ecosystem functions of seagrass beds may vary

considerably within and between different estuarine and coastal systems. For

successful management, a specific understanding of seagrass ecology within

New Zealand is required, preferably at the regional or estuary scale, rather than

relying on international paradigms.

Keywords: Zostera capricorni, ecology, threats, monitoring, indicator species,

ecosystem health
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1. Introduction

Internationally, seagrass ecology has received increased attention from marine

scientists in the last decade, which has in turn resulted in a number of

comprehensive publications on the topic (e.g. Duarte 1999; Hemminga &

Duarte 2000; Short & Coles 2001; Green & Short 2003). However, within these

publications, there has been only one chapter about seagrass in New Zealand

(Inglis 2003), within a treatise on global seagrasses. The current review was

prepared at the conclusion of a study that assessed some aspects of the ecology

of intertidal seagrass in estuaries of the North Island, New Zealand.

While a lot is known about seagrasses in other regions, the role that these plants

play and just how important they are in estuarine and coastal ecosystems in

New Zealand is less well understood and to date has been the subject of limited

study. More research is required if we are to better understand the ecology and

role of seagrass habitat in New Zealand estuarine and coastal ecosystems. In this

review, we synthesise the status of knowledge of New Zealand seagrass at the

time of writing and set out some guidelines for the management and monitoring

of seagrass. We begin by summarising generalities about seagrass ecology

globally and then focus on existing New Zealand information, utilising

international examples when relevant to the New Zealand situation. We are

pleased to note that with the increased appreciation of the potential

significance of seagrass, a number of new initiatives have begun since this work

was completed. Therefore, this document is likely to require updating within

the next few years to assist in providing a sound scientific basis for the

conservation and management of seagrass habitat in New Zealand.

This report has been prepared primarily for coastal resource managers, to assist

in the management and conservation of seagrass, but will also be a useful

resource for other interest groups and stakeholders. An increased awareness of

the value of seagrass, and of the potential risks and long-term consequences of

loss or degradation of seagrass habitat, will play a significant role in the

successful implementation of management activities initiated to protect New

Zealand’s seagrass habitat. While the focus of this report is on seagrass, this is

only one component of a complex ecosystem; we need to understand, manage

and protect the whole ecosystem.
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2. General seagrass biology

There are an estimated 50–60 named species of seagrass worldwide,

represented by 12 genera in five families (Hydrocharitaceae, Cymodoceaceae,

Posidoniaceae, Zosteraceae and Ruppiaceae); the greatest diversity is found in

tropical regions (Larkum & Den Hartog 1989; Sullivan 1994; McCook 1998;

Hemminga & Duarte 2000; Spalding et al. 2003). The species share a

fundamentally similar architecture and physiology, and perform similar

ecosystem functions.

Seagrasses are true flowering plants (Angiospermae), with stems, leaves, roots

and flowers, which have become specialised to grow rooted and submersed in

estuarine and coastal environments. While seagrasses are all monocotyledons,

they are not true grasses (family Poaceae). Seagrasses are the only flowering

plants that grow in the sea, and are thought to be derived from terrestrial plants

that colonised the marine environment c. 100 million years ago (Den Hartog

1970; Larkum & Den Hartog 1989; but see Stevenson 1988; Sullivan 1994).

Seagrasses are mainly found in intertidal (to about the mid-tide level) and

shallow subtidal areas in bays, estuaries and coastal waters around many of the

world’s subarctic, temperate and tropical coasts (Larkum & Den Hartog 1989;

Hemminga & Duarte 2000; Green & Short 2003; Spalding et al. 2003). Seagrasses

reach their most northerly distribution in Norway, Russia and Alaska, and their

most southerly distribution at Stewart Island, New Zealand (Spalding et al.

2003).

Typically, seagrasses are found in water depths of 2–12 m, where light intensity

is greatest, but in some areas they can occur down to depths of 50–60 m

(Lee Long & Coles 1997; McCook 1998; Coles et al. 2003; Spalding et al. 2003).

They occur on a variety of substrata, from mud through to sand and even

bedrock, generally in areas sheltered from wave action and strong currents

(McCook 1998; Hemminga & Duarte 2000; Spalding et al. 2003). The most

extensive seagrass beds occur in soft substrates (sand and mud), where they

may form continuous expanses of vegetation extending over several square

kilometres, or mosaics of discrete patches surrounded by unvegetated

sediment. They often represent the dominant and most highly productive

habitat type of intertidal and shallow subtidal zones (Duarte & Chiscano 1999;

Hemminga & Duarte 2000; Green & Short 2003).

Seagrasses possess a number of anatomical, morphological and physiological

adaptations that are unique for submerged marine plants (Stevenson 1988; Kuo

& McComb 1989; Larkum et al. 1989; McConchie & Knox 1989; Tyerman 1989;

McCook 1998; Hemminga & Duarte 2000; Spalding et al. 2003). These include:

• An extensive system of roots and rhizomes (horizontal underground stems),

which allow the plants to withstand wave action and tidal currents,

anchoring the plant in the sediment. The roots and rhizomes are specialised

for extracting nutrients and minerals from the sediment pore-waters, and the

rhizome also functions in the vegetative propagation of the plants and serves

as a storage area for carbohydrates.
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• An extensive system of veins and air channels in the leaves and stems, which

enable the plants to live in oxygen-deficient sediments, facilitating the

diffusion of oxygen from the leaves to the buried roots and rhizomes.

• Thin, linear, grass-like leaves (in many seagrass species) produced on vertical

branches, which facilitate light penetration, adsorption of nutrients,

diffusion of gases and buoyancy.

• Flowers and pollination systems that are well adapted for pollination by

water (hydrophilous pollination). In most genera, the flowers are borne

underwater. The pollen grains are released into the water column and are

transported to other plants, where the pollen becomes attached to female

flowers and fertilisation occurs to produce seeds. Asexual (vegetative)

propagation may also occur via fragmentation of the rhizome, with

vegetative fragments potentially providing an additional mechanism for

dispersal (Cambridge et al. 1983; Ewanchuk & Williams 1996; Campbell

2003; Marbà et al. 2004).

These features enable the plants to exist in shallow coastal and estuarine areas,

which have variable salinities and are subject to periods of submersion or

complete submersion, wave and tidal action, and shifting sediments.

2 . 1 S P E C I E S  O F  S E A G R A S S  I N  N E W  Z E A L A N D

In New Zealand, the seagrass flora is represented by one genus, Zostera, in the

family Zosteraceae. Until recently, it was generally considered that there were

two species native to New Zealand: Zostera capricorni Aschers. and Zostera

novazelandica Setchell. Z. capricorni was considered to be confined to the

North Island, while Z. novazelandica was considered an endemic species

reportedly found throughout coastal New Zealand (Den Hartog 1970; Moore &

Edgar 1976; Johnson & Brooke 1989; Webb et al. 1990). However, there are few

morphologically distinctive characteristics between the two species.

Furthermore, phylogenetic analysis of morphological characters and DNA

sequences of samples from a limited number of locations in New Zealand have

identified a lack of molecular divergence among Australian and New Zealand

Zostera, which were formerly segregated as four distinct species

(Z. capricorni, Zostera muelleri, Zostera mucronata and Z. novazelandica),

as well as a lack of reliable morphological characters to separate these four

species (Les et al. 2002). Consequently, Les et al. (2002) recommended the

taxonomic merger of Australian/New Zealand Zostera into a single species,

Z. capricorni. Recent molecular genetic and morphological analysis has

indicated that Z. capricorni and Z. muelleri should be considered synonymous

(Waycott et al. 2004). However, more comprehensive surveys and phylogenetic

analyses will be required to definitively confirm the existence of a single

species within New Zealand.

Whether there are one or two species of seagrass in New Zealand, its seagrass

flora is extremely limited compared, for example, with Australia, which has

c. 30 different species of seagrass, including the highest diversity of temperate

seagrasses worldwide, and the largest single area of temperate seagrass meadow

in the world (Kirkman 1997). Z. capricorni is one of the most common
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temperate species found in Australia, occurring predominantly in sheltered

bays, estuaries and in coastal lagoons (Coles et al 1989; West et al. 1989;

Kirkman 1997; Coles et al. 2003; Green & Short 2003).

2 . 2 T H E  E C O S Y S T E M  V A L U E  O F  S E A G R A S S E S

Seagrasses perform a variety of functions within estuarine and coastal

ecosystems, and have both economic and ecological value. These roles are so

important that seagrasses are considered to be some of the most valuable

components of estuarine and coastal ecosystems in terms of the value-added

benefits of the services they provide (Costanza et al. 1997). While seagrasses

undoubtedly have multiple functions and attributes, their relative importance

may vary considerably within and between different estuarine and coastal

systems.

2.2.1 High primary productivity—including benthic and epiphytic
production

Seagrasses represent important components of coastal primary productivity and

support numerous detritus-based and herbivore-based food webs. Seagrasses are

highly productive, with an estimated average annual production of 1012 g dry

weight m–2 year–1 (this estimate is conservative, as root production is under-

represented), which rivals or exceeds that of terrestrially cultivated areas

(Duarte & Chiscano 1999).

A large variety of micro- and macro-algae also occur in seagrass beds, attached to

seagrass leaves, stones and shells, anchored in the sediment, or free living on

the seafloor. These contribute significantly to the overall primary productivity

of seagrass systems and represent important food sources for many animals

utilising seagrass beds (Borowitzka & Lethbridge 1989; Klumpp et al. 1989;

Keough & Jenkins 1995; Hemminga & Duarte 2000; Williams & Heck 2000;

Kaldy et al. 2002; Hily et al. 2004; Keuskamp 2004; Connolly et al. 2005; Tomas

et al. 2005). Grazers can play an important role in controlling the epiphyte loads

on seagrass leaves, which enhances seagrass productivity and biomass, thereby

mitigating the negative impacts of epiphytic growth that tends to occur in

water columns with elevated nutrient levels (Hootsmans & Vermaat 1985;

Howard & Short 1986; Neckles et al. 1993; Williams & Ruckelshaus 1993;

Philippart 1995a; Jernakoff & Nielsen 1997; Heck et al. 2000; Frankovich &

Zieman 2005; Hays 2005).

Direct grazing on seagrass leaves has generally been considered to be a

relatively unimportant trophic pathway in temperate seagrass beds. However,

recent studies have indicated that grazing on the plants, as well as predation on

reproductive structures, may be significant, and that the importance of

seagrasses to food webs has previously been greatly underestimated (Stevenson

1988; Klumpp et al. 1989; Fishman & Orth 1996; Rose et al. 1999; Williams &

Heck 2000; Kirsch et al. 2002; Valentine et al. 2002). Cebrián & Duarte (1998)

have reported that the extent of herbivory varies greatly both within and among

seagrass species, ranging from negligible values to up to 50% of leaf production

removed in some species.
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Many seagrass systems are net exporters of organic material and thus support

broader estuarine and coastal productivity (De Boer 2000; Hemminga & Duarte

2000; Valentine et al. 2002; Spalding et al. 2003; Terrados & Borum 2004). The

majority of organic matter is produced by decomposition, and enters the food

chain through the detrital pathway and as dissolved organic matter (Harrison

1989; Kenworthy et al. 1989; Klumpp et al. 1989; Keough & Jenkins 1995;

Cebrián et al. 1997; De Boer 2000). Assimilation of plant material into food

webs occurs not only within the seagrass bed itself, but also into habitats that

may be considerable distances from the bed, as a result of the transport of

seagrass detritus. There have been few attempts to quantify the transfer of

seagrass production into coastal food webs, or to determine the importance of

seagrass production relative to primary production generated by other major

plant groups (phytoplankton, macroalgae, benthic microalgae, mangroves,

etc.). Normally 65%–80% of organic matter produced by seagrass beds remains

in the bed as detritus, while 10%–20% (in some situations up to 50%) is carried

away from the beds (Keough & Jenkins 1995).

2.2.2 Habitat

Seagrasses generally occur in comparatively homogeneous, soft-sediment

environments and, due to the presence of both above-ground leaves and the

extensive below-ground root-rhizome system, they greatly increase both the

horizontal and vertical structural complexity of the habitat above that of the

surrounding seafloor.

Habitat complexity within seagrass beds has a significant influence on the

diversity, abundance and spatial distribution of associated flora and fauna by:

• Increasing the variety of microhabitats around the leaves and root-rhizomes,

as well as increasing the total area of available substrata (Leber 1985; Stoner

& Lewis 1985; Bell & Westoby 1986; Main 1987; Bell & Pollard 1989; Howard

et al. 1989; Schneider & Mann 1991; Worthington et al. 1992; Connolly

1994b; Irlandi 1997; Webster et al. 1998; Attrill et al. 2000; Bologna & Heck

2000; Williams & Heck 2000; Lee et al. 2001; Spalding et al. 2003).

• Altering predator-prey relationships as a consequence of the increased

habitat complexity affording shelter from predation and inhibiting foraging

(Coen et al. 1981; Heck & Thoman 1981; Peterson 1982; Orth et al. 1984;

Summerson & Peterson 1984; Leber 1985; Bell & Pollard 1989; Howard et al.

1989; Pohle et al. 1991; Connolly 1994a; Irlandi 1994; Boström & Mattila

1999; Coronoa et al. 2000; Hindell et al. 2000; Williams & Heck 2000; Hovel

& Lipcius 2001; Bartholomew 2002; Hindell et al. 2002; Schofield 2003;

Adams et al. 2004). There is, however, considerable variation in precisely

how the presence of seagrass affects the outcomes of predator-prey

interactions among individual suites of predators and prey, among seagrass

species, and among seasons and years (Williams & Heck 2000).

• Modifying the hydrodynamic environment by reducing the effects of

currents and wave action at the sea-bed, which facilitates the settlement of

planktonic larvae as well as of fine sediments and organic materials, thus

altering the availability of food for benthic fauna (Peterson 1986; Eckman

1987; Howard et al. 1989; Wilson 1990; Boström & Bonsdorff 2000; Terrados
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& Duarte 2000; Williams & Heck 2000; Moran et al. 2004; Peterson et al.

2004).

• Stabilising the sediment, protecting against wave disturbance and favouring

sedentary species that require stable substrates for maintenance of their

permanent tubes and burrows (Orth 1977b; Brenchley 1982; Posey 1987;

Irlandi & Peterson 1991; Irlandi 1996).

Seagrasses are widely considered to provide critical habitat (e.g. feeding,

breeding and nursery areas), as well as refuge from predation, competition, and

physical and chemical stresses, for a wide variety of taxonomic and functional

groups (e.g. birds, fish and invertebrates) (Heck & Thoman 1984; Fonseca et al.

1992; Hoss & Thayer 1993; Loneragan et al. 1998; Lipcius et al. 2005). This

includes the juvenile stages of species that are ecologically important or are

commercially or recreationally harvested in other ecosystems. However, the

exclusivity of some of these widely accepted paradigms are increasingly being

challenged (Hemminga & Duarte 2000; Williams & Heck 2000). While it is well

established that seagrass beds provide nursery habitat for many species,

juveniles that are known to occur in seagrass beds may also use alternative

nursery habitats (e.g. algal reefs, oyster beds and mangroves), and different

seagrass beds, even of the same species, may vary considerably in terms of their

nursery value (Hemminga & Duarte 2000); for example, there is considered to

be limited evidence for a significant nursery function of seagrasses in temperate

Australia (Edgar & Shaw 1993, 1995a,b).

2.2.3 Trapping and stabilisation of bottom sediments

The well-developed canopy formed by seagrass beds slows the rate at which

water flows over the seafloor by increasing resistance to water currents

(Fonseca et al. 1982; Fonseca & Fisher 1986; Gambi et al. 1990; Fonseca &

Cahalan 1992; Worcester 1995; Koch & Gust 1999; Heiss et al. 2000; Peterson et

al. 2004). This in turn creates a low-energy microenvironment within the bed,

which facilitates the deposition and retention of suspended inorganic and

organic material, including sediment and planktonic larvae, and reduces

turbulence and scouring (Fonseca et al. 1982; Fonseca & Fisher 1986; Fonseca

1989b; Klumpp et al. 1989; Duarte et al. 1999; Heiss et al. 2000; Gacia & Duarte

2001; Lee et al. 2001; Agawin & Duarte 2002; Spalding et al. 2003; Lepoint et al.

2004). Sediment builds up under the canopy of seagrass beds, and the extensive

root-rhizome system of the plants then acts to trap and stabilise the bottom

sediments, providing protection against sediment erosion (Fonseca et al. 1983;

Bulthuis et al. 1984; Ward et al. 1984; Fonseca 1989b).

The trapping and stabilisation of terrestrially derived sediments from estuarine

and coastal waters is an important function of seagrasses. This has an important

role in contributing to reducing erosion and resuspension in coastal areas, and

helping to improve water clarity in the immediate environment and adjacent

habitats (Christiansen et al. 1981; Bulthuis et al. 1984; Short & Short 1984; Ward

et al. 1984; Gacia & Duarte 2001).

Seagrasses also help to settle and remove contaminants (nutrients and chemical

pollutants) from the water column, thereby contributing to improvements in

water quality (Short & Short 1984; Ward 1987; Hoven et al. 1999).
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2.2.4 Nutrient cycling

Nutrient cycling within marine sediments and between the sediments and the

surrounding water is mediated by the presence of seagrasses, which provide a

link between the sediment and overlying water column (Harrison 1989; Hillman

et al. 1989; Moriarty & Boon 1989; Hemminga et al. 1991; De Boer 2000;

Hemminga & Duarte 2000; Spalding et al. 2003). Some key processes

contributing to nutrient losses from seagrass beds and their associated

sediments include leaching from living and dead plant material, export of

sloughed leaves and leaf fragments, nutrient transfer by foraging animals, de-

nitrification, and diffusion from the sediment (Hemminga et al. 1991;

Hemminga & Duarte 2000). Nutrients may be replenished by nitrogen fixation

in the sediments, sedimentation, and nutrient uptake by the leaves. The

environmental conditions for the various nutrient transformations are mediated

by the photosynthesis and respiration of the seagrass plants.

Seagrass roots take up a large proportion of plant nitrogen (Short 1987;

Zimmerman et al. 1987; Hemminga et al. 1991; Pedersen & Borum 1993;

Pedersen et al. 1997), with rhizomes and roots representing a substantial

proportion of the plant biomass in some seagrass communities (Kenworthy &

Thayer 1984; Larkum et al. 1984; Pangallo & Bell 1988; Hillman et al. 1989;

McKenzie 1994; Paling & McComb 2000; Turner & Schwarz in press). Given the

large biomass of rhizomes and roots, and the associated pools of nitrogen

within the below-ground parts of the plant and detritus, the decomposition of

the below-ground organic matter makes a substantial contribution to the

sediment nitrogen pool, which is available to supply plant requirements,

nitrogen recycling processes or diffusion into the water column (Iizumi et al.

1982; Kenworthy et al. 1982; Kenworthy & Thayer 1984; Boon 1986; Klumpp et

al. 1989).
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3. Biology and ecology of Zostera
in New Zealand

This section draws on published and unpublished studies of Zostera in New

Zealand. In addition, references to published reports of Z. capricorni in

Australia are included for comparison, particularly where the ecology of New

Zealand Zostera is poorly documented.

3 . 1 M O R P H O L O G I C A L  C H A R A C T E R I S T I C S

The leaves of Z. capricorni are thin and translucent with a blunt leaf tip and

smooth leaf margin. Each leaf has distinct longitudinal veins, and cross veins at

right angles to the longitudinal veins. There is considerable morphological

variation within natural populations of Zostera from different locations in New

Zealand. For example, plants growing intertidally in Coromandel Peninsula

estuaries have leaves up to 5.5–9.0 cm in length and 1.1–1.8 mm in width, and

typically have three to five leaves per shoot (Turner & Schwarz in press). In

Otago Harbour, plants generally have three to four (occasionally five) leaves per

shoot, and leaves reach 10.7–11.3 cm in length (Ismail 2001). In Manukau

Harbour, the plants have a mean number of three leaves per shoot, with the

longest leaves reaching mean lengths of 3.9–5.5 cm (Turner et al. 1996).

The rhizome has internodes of varying length, with one to two or more groups

of long, thin roots at each node. Rhizome diameters are typically 1–2 mm. The

extensive root-rhizome system is usually buried several centimetres (generally

< 15–20 cm) below the sediment surface. Each node along the rhizome bears a

short lateral branch with erect shoots that bear the leaves and leaf sheaths. The

meristems (the areas where active cell division takes place), which

continuously produce new plant tissue, are located at the apices of the rhizome

and its branches. The leaf base or sheath encloses the growing tip of the

rhizome and protects the young leaves. Each node also bears a single

translucent leaf originating from the rhizome instead of from the vertical, leaf-

bearing shoot.

3 . 2 L I F E - H I S T O R Y  C H A R A C T E R I S T I C S

Seagrasses rely on both vegetative (asexual) and sexual reproduction for the

maintenance of existing beds and the colonisation of new areas (Hemminga &

Duarte 2000; Marbà et al. 2004; Olesen et al. 2004). Increase in the area

occupied by seagrasses, as well as the maintenance of seagrass beds, is

principally through vegetative propagation, which involves the continual

growth and branching of rhizomes and the production of lateral shoots, rather

than by colonisation by seedlings (Tomlinson 1974; Duarte & Sand-Jensen

1990a,b; Williams 1990; Gallegos et al. 1993; Olesen & Sand-Jensen 1994a;
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Vermaat et al. 1995; Marbà & Duarte 1998; Nakaoka & Aioi 1999; Hemminga &

Duarte 2000; Marbà et al. 2004). Although sexual reproduction is probably not

important for population maintenance in an established bed, it is likely to be

important for the long-term dynamics of seagrass beds, particularly during re-

establishment following large-scale declines in seagrass abundance, during

which open spaces become available for establishment and growth (Rasheed

1999; Marbà et al. 2004; Olesen et al. 2004).

In New Zealand, Zostera is perennial and, from the limited number of studies

that have been reported, appears to reproduce primarily by vegetative

propagation, with reproductive structures occurring infrequently (Inglis 2003;

ST & A-MS, pers. obs.). During a 3-year study of seagrass in estuaries around the

central North Island, there were no observations of Zostera flowering (Turner

& Schwarz in press). Rhizome growth and new shoot and leaf production were

observed to occur throughout the year, suggesting that vegetative growth is

important in the persistence of the beds at these sites.

There is little known about the reproductive ecology of seagrass in New

Zealand, and in particular about the role of sexual reproduction in the

establishment and maintenance of seagrass beds. Ramage (1995) has described

the reproductive morphology of Zostera growing on intertidal platforms on the

Kaikoura Peninsula. The specialised flowering shoots are comprised of several

branches, each with a number of inflorescences (clusters of flowers). Each

inflorescence is comprised of a spathal sheath, which encloses a spadix on

which 8–12 male (anthers) and female (pistils) flowers are alternately arranged.

When the male flowers are mature, dehiscence and release of the thread-like

pollen grains occurs, followed by the simultaneous development of the female

flowers within the spathe. Floating pollen threads are snared on stigmata that

project through the spathal sheath. The simple fruit is a drupe with a single seed

and one carple (Ramage 1995).

There is some information on the timing of flowering in some areas of New

Zealand. Den Hartog (1970) reported observations of flowering from November

to March, with fruits being found only in February and March. Ismail (2001) also

recorded flowering shoots in December and March in Otago Harbour, where

flowering-shoot biomass constituted < 1% of leaf standing crop.

A comprehensive study published by Ramage & Schiel (1998, 1999) has

described flowering patterns and characteristics for Zostera growing on

intertidal platforms on the Kaikoura Peninsula. Here Zostera was reported to

reproduce during summer, with seedlings found in tide-pools or water-filled

crevices during late autumn. The flowering season lasts for up to 8 months of

the year, from October to June, with peak flower production in January to

March—a reproductive pattern typical of Zostera species at higher latitudes

(Ramage & Schiel 1998). Flowering lasted longest in the low intertidal zone,

while plants high on the shore that were not associated with tide-pools were

reproductive for only 3 months. At the flowering peak, reproductive shoots

corresponded to > 15% of leaf standing crop. Reproductive output was related

to plant biomass, and varied significantly with site, association with tide-pools

and shore-level. Plants low on the shore and those associated with tide-pools or

crevices produced more flowering shoots (up to 55 flowering shoots/0.1 m2)

and more inflorescences per shoot (up to nine inflorescences per flowering
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shoot) than those high on the shore or not associated with tide-pools (Ramage

& Schiel 1998). Temperature, light intensity and salinity were all found to

contribute to the regulation of formation of reproductive shoots and the onset

of flowering under laboratory conditions (Ramage & Schiel 1998).

At the Kaikoura Peninsula sites, mature embryos and seeds were seen from late

December to March, with seeds apparently over-wintering and germinating the

following spring (September) (Ramage & Schiel 1998). Seedlings were found

mostly associated with turfing coralline algae, which accumulates sediment and

thereby provides a suitable substratum for seed germination. Seedlings

represented 40% of new patches that were formed at the sites in spring, but

mortality due to removal by wave action was high, with no seedlings surviving

for more than a few months. Ramage & Schiel (1999) concluded that the

successful recruitment of seedlings was either episodic or occurred at very low

levels at these sites.

In sub-tropical Queensland, the flowering season of Z. capricorni lasts for up to

8 months of the year, from September to March/April, with peak flower

production from September to November (Young & Kirkman 1975; Conacher et

al. 1994b; Rasheed 1999). Conacher et al. (1994b) found that both the timing

and production of flowers and seeds differed between sites and different

morphological types of Z. capricorni in Moreton Bay, Queensland. The density

of flowering shoots varied between an average of 4 to 340 flowering shoots/m2,

with an average of three inflorescences per shoot. Further south in New South

Wales, Z. capricorni has been recorded flowering over 6 months of the year,

from September to April (Larkum et al. 1984), and throughout the year (Harris

et al. 1979). Inglis & Lincoln Smith (1998) sampled nine Z. capricorni beds in

three estuaries in New South Wales, and found that although reproductive

shoots were widespread, the timing and intensity of flowering varied widely

among estuaries and exhibited considerable patchiness within individual beds.

The percentage of flowering shoots of Z. capricorni varied between < 5% to

37% in eastern Australia (Conacher et al. 1994b). Reproduction is probably

controlled by several environmental factors, rather than by any one variable.

Inglis & Lincoln Smith (1998) found that the initiation of flower production was

apparently triggered by regional changes in environmental conditions, such as

water temperature or photoperiod, whereas the abundance of flowers varied

significantly among estuaries and was influenced by both within-estuary

processes and by local conditions within each bed.

Information from Z. capricorni beds in subtropical Queensland suggests that it

takes 1.5–2 months for female flowers to be fertilised and to develop into

mature seeds (Conacher et al. 1994b). Most seeds are found in the spring and

summer, which coincides with the period of seed production, and few seeds are

found over the winter (Conacher et al. 1994b). The seeds of Z. capricorni do

not appear to have any specialised adaptations for dispersal, and are thus likely

to settle rapidly, dispersing only a few metres from where they are released

even under strong winds and currents (Rasheed 1999). Only a small proportion

of the total number of seeds produced was found in the sediment, suggesting

that there was no evidence for the formation of large seed banks. Z. capricorni

seeds are thought to have a relatively short dormancy period (in the order of

4 months). Given the lack of observations of seedlings, germination rates are
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thought to be low, with many seeds presumably exported, eaten or destroyed

(Conacher et al. 1994b). The highest recorded seed density was

542 ± 194 seeds/m2, although in another study Conacher et al. (1994a)

recorded seed densities of 2904 ± 149 seeds/m2 during the flowering season;

this increase was attributed to the comparatively high flowering frequency and

shoot density. Most of the annual seed production by species of Zostera

germinates within a few months of release, with only a small proportion

persisting for longer periods. Burial and anoxia have been shown to stimulate

germination under field conditions (Inglis 2000). Depending on the relative

success of vegetative versus sexual reproduction, the fate of seeds has

important implications for the natural maintenance and recolonisation of

seagrass beds.

3 . 3 S E A G R A S S  B E D  A N D  P A T C H  D Y N A M I C S

There have been a few studies in New Zealand on the dynamics of seagrass

colonisation, expansion, recession and mortality processes at the patch or bed

scale. Turner et al. (1996) documented the spatial and temporal dynamics of

intertidal patches of Zostera over a 2-year period at two sites in Manukau

Harbour and one site in Whangapoua Harbour (Coromandel Peninsula). Patch

size increased at all three sites over the first year, but at one of the Manukau

Harbour sites there was a marked decline in patch size over the second year of

the study, which was also reflected in decreases in patch biomass and

percentage cover. Over the summer (October 1994–April 1995), the period of

greatest change in patch size, patches expanded horizontally on average by

> 3 m along the main patch axis at the two Manukau sites, and by > 1 m at the

Whangapoua Harbour site. Over the winter (April–October), the increase in

patch size was generally < 1 m. At one of the Manukau Harbour sites, mean

patch size increased by at least 200% along the main axis, from 5.6 m to 12.3 m

over the 2-year study. It is not understood what caused this reduction in patch

size at one of the Manukau Harbour sites, and why similar changes were not

observed at the second site. The significant differences in the rate and pattern

of patch expansion or contraction among the sites, as well as observed

differences in rhizome growth patterns and shoot demographics, were

considered to be a response to local environmental conditions (Turner et al.

1996). These differences reflected differential resource allocation under

different conditions, in particular exposure to wind-generated wave activity or

tidal flows. This work highlighted the importance of studying seagrass systems

concurrently at several different spatial scales (e.g. rhizome demography, patch

expansion and contraction, and landscape patterns) if the dynamics of these

systems are to be understood.

Ramage & Schiel (1999) documented the patch dynamics of Zostera over a

1-year period on two intertidal platforms on the Kaikoura Peninsula. Patches

were formed by the germination of seeds or by fragmentation of large

established patches during winter and spring. Despite fluctuations in patch

size, recruitment and mortality throughout the year, there was little variation in

the total cover of seagrass patches after 1 year. During winter, there was a

general deterioration of patches and a reduction in patch size, which was
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attributed to increased wave action and erosion of sediment around the patch

margins. Variability between the sites was attributed to differences in the

intensity of wave action. Patch loss was also greatest during the winter and

spring, as newly germinated seedlings and small patches experienced severe

erosion and were removed by storms. Loss of patches was generally confined to

patches less than 0.4 m2 (c. 800 shoots), of which 60% were lost during the

study; large patches (> 1 m2) were much more resilient to disturbance and

appeared to be relatively long-lived. While there was an overall decrease in the

number of patches over the year, the natural expansion of established patches

maintained a relatively constant coverage. Patches expanded over the spring-

summer, when there was also an increase in shoot density and biomass. The

proportional expansion and contraction of patches was independent of initial

patch size.

In a study to map changes (0.25-m2 resolution) in the percentage cover and

position of the edge of the seagrass bed in permanent quadrats at four sites in

Whangamata, Wharekawa and Whangapoua Harbours on the east coast of the

Coromandel Peninsula, it was found that at all sites there was an overall

increase in the area occupied by the beds within the quadrats over 2 years (ST,

unpubl. data). There was considerable spatial (between replicates at a site, and

among sites) and temporal (summer/winter and inter-annual) variability. Bed

margins extended by 1–3 m, with extension over any 6-month period varying

between 0.5 m and 1.5 m.

Ismail (2001) documented changes in the spatial extent and cover of Zostera in

an intertidal area of Otago Harbour over a 1-year period. Total seagrass cover

declined from autumn to spring; there was then little change in total cover over

the following spring to autumn period. Over the same period, there was an

increase in the area occupied by sparse seagrass (< 30% ground cover).

3 . 4 G R O W T H  A N D  P R O D U C T I O N

There have been a limited number of studies documenting the demography and

productivity of Zostera in New Zealand. In general, however, it appears that a

seasonal pattern is evident across a wide latitudinal range, with a winter

minimum in above-ground biomass recorded at sites from the Coromandel

Peninsula to Otago Harbour (Ramage & Schiel 1999; Ismail 2001; Turner &

Schwarz in press). The reported average above- and below-ground biomass and

production of Zostera at different locations throughout its range are

summarised in Table 1.

In estuaries on the Coromandel Peninsula, both biomass and shoot density were

found to vary between summer (January) and winter (July), with above- and

below-ground biomass and shoot density generally lowest in winter and highest

in summer (Turner & Schwarz in press). Below-ground biomass was more

variable than above-ground biomass, and comprised the greatest proportion of

total biomass; there was an indication of a shift towards a greater accumulation

of resources in the form of below-ground biomass at those sites where the

plants were more productive (i.e. more total biomass production). The

relatively high below-ground biomass may be a reflection of a comparatively
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low turnover of below-ground material, resulting in a greater capacity for the

long-term accumulation of material, as well as a lower loss of below-ground

material through disturbance and grazing. There were also seasonal differences

in shoot characteristics and plant morphology, which contributed to variations

in biomass and shoot density. At some sites, the lengths of the primary rhizome

internodes, the frequency of rhizome branching and the lengths of leaves at the

edge of the bed were longer in winter than summer, indicating that winter may

be an important period for growth of Z. capricorni, despite the lower ambient

temperatures.

In Otago Harbour, there was a clear seasonal trend in above-ground biomass

that was consistent between years, with maximum biomass recorded in autumn

(March) and minimum biomass recorded during winter and spring (July–

October) (Ismail 2001). Below-ground biomass, which contributed most to the

total biomass, did not vary markedly over the course of the study. Shoot density

and the number of leaves per shoot did not vary seasonally. However, there was

marked seasonal variation in leaf length: the longest leaves were recorded in

March, corresponding to the period of high leaf growth rates, and the shortest

in October–December, associated with the formation of new shoots and the

shedding of dead leaves from the previous winter. Ismail (2001) attributed the

observed variation in above-ground biomass to changes in leaf dimensions.

The temporal growth pattern of Zostera patches on intertidal platforms on the

Kaikoura Peninsula exhibited similar unimodal seasonal trends, with vegetative,

reproductive and below-ground biomass being greatest in summer and

declining to low levels in winter (Ramage & Schiel 1999). Shoot densities and

the number of leaves per shoot exhibited seasonal patterns, with the lowest

densities and the smallest number of leaves per shoot recorded in winter and

the highest densities and greatest numbers of leaves recorded in summer. There

was no evidence of seasonal trends in leaf length.

Seasonal patterns in biomass and shoot density of seagrasses are generally

consistent with the high growth rates that have been reported for temperate

intertidal seagrasses during spring-summer (Kirkman et al. 1982; Larkum et al.

1984; Hillman et al. 1989; Conacher et al. 1994b; McKenzie 1994; Campbell &

Miller 2002). These patterns have generally been attributed to annual cycles in

photosynthetically available radiation, as well as factors such as temperature

and available nutrients, or some combination of these factors. This is supported

by the observed winter biomass minima recorded for New Zealand populations

(Ramage & Schiel 1999; Ismail 2001; Turner & Schwarz in press). In a study of

Zostera in Whangapoua Harbour, Schwarz (2004) predicted that total

production of plants at mean sea-level would be reduced during the winter to

< 20% of that in summer because of reduced solar radiation and shorter day

length. Nevertheless, for the North Island at least, winter probably remains an

important time for photosynthetic gains for intertidal plants, as high irradiance

stress is reduced (Turner & Schwarz in press).

Seagrasses grow by the reiteration of rhizome internodes, shoots and roots

(Tomlinson 1974; Duarte 1991a; Duarte et al. 1994; Marbà & Duarte 1998;

Hemminga & Duarte 2000). The time interval between the initiation of two

successive rhizome internodes or leaves is termed the plastochrone interval

(Ford 1982; Brouns 1985). In estuaries on the Coromandel Peninsula, Zostera
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has been found to produce one new rhizome internode every 5.4–13.0 days and

one new leaf every 8.1–11.2 days in the summer (January–February) (ST,

unpubl. data). These figures are similar to the values reported for Z. capricorni

growing in other locations; for example, Larkum et al. (1984) reported that in

Botany Bay, New South Wales, a new leaf was produced on each shoot on

average every 13 days.

During the summer (January) period of highest productivity, leaf-blade

elongation averaged 2.0–4.4 mm/day, and rhizome extension rates averaged

0.3–5.2 mm/day in Coromandel Peninsula estuaries (ST, unpubl. data). Turner

et al. (1996) reported average leaf-blade elongation rates of 1.9–2.6 mm/day in

October at sites in the Manukau Harbour, and rhizome extension rates of

2.1–2.7 mm/day between October and April at the same sites. Larkum et al.

(1984) recorded Z. capricorni leaf growth rates as high as 16.2 mm/day in

January at a site in Botany Bay, New South Wales.

3 . 5 L I M I T S  T O  S E A G R A S S  B I O M A S S  A N D
P R O D U C T I O N

There are a number of environmental factors that are critical determinants of

whether seagrasses will grow and persist at a site. These include light and

nutrients, which limit the photosynthetic activity of the plants, and physical-

chemical parameters that regulate the physiological activity of seagrasses,

including temperature, salinity, waves, currents and substrate characteristics.

Broadly speaking, seagrasses occur between an upper limit imposed by

exposure to desiccation at low tide, wave action and associated turbidity, and

reduced salinity from freshwater inflows, and a lower limit imposed by light

penetration to an intensity sufficient for net photosynthesis (Hemminga &

Duarte 2000). Understanding the physiological and environmental factors

required for Zostera growth is the first step to understanding the potential

effects of environmental change, and therefore the ability of the plant to

occupy space and survive, at any particular site.

3.5.1 Light

The annual photosynthetically available radiation that can be utilised by

seagrasses is one of the primary environmental factors influencing

photosynthesis, growth and productivity, as well as the depth distribution of

seagrasses (Dennison & Alberte 1982, 1985; Dennison 1987; Hillman et al.

1989; Duarte 1991b; Dennison et al. 1993; Olesen & Sand-Jensen 1993). Plants

will colonise suitable substrates to the depth at which the light intensity allows

photosynthesis to exceed respiration on an annual basis; thus any significant

reduction in light transmission through the water column will bring about a

reduction in the depth to which the plants are able to survive. The

consequences of physiological stress associated with light limitation include

diminished growth and productivity, increased shoot mortality, and limited

depth distribution (Bulthuis 1983; Zimmerman et al. 1991; Gordon et al. 1994;

Czerny & Dunton 1995; Philippart 1995b; Kenworthy & Fonseca 1996;

Longstaff et al. 1999; Peralta et al. 2002; Biber et al. 2005). Changes in light
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regime are thought to have caused large-scale loss of seagrasses in the natural

environment, and it is evident from international studies that maintaining

adequate light regimes is a minimal requirement for the preservation of seagrass

beds (Kenworthy & Haunert 1991; Duarte 1999; Batiuk et al. 2000). Therefore,

it is important to understand the responses of seagrasses to different light

conditions and the light conditions that will permit the maintenance and

growth of seagrasses at a given site.

Seagrasses require high levels of light (generally 15%–25% incident radiation,

which is more than some marine macroalgae and phytoplankton, which

typically require < 5%) because of their complex below-ground structures,

which include considerable amounts of non-photosynthetic tissues (Bulthuis

1983; Duarte 1991b; Kenworthy & Haunert 1991; Dennison et al. 1993;

Hemminga & Duarte 2000; Spalding et al. 2003; Walker 2003). Light

transmission in coastal waters is much lower than in clear ocean water, due to

generally higher loads of particulates and dissolved organic substances. The

resulting reduction in penetration of light through the water column can limit

photosynthesis. Globally, there is a general relationship between the depth to

which seagrasses can grow and water clarity, and the majority of seagrasses are

confined to depths of less than 20 m, which is roughly equivalent to 11% of

surface irradiance (Duarte 1991b). The same species may, however, have

different light requirements in different habitats (Dennison et al. 1993),

although the reasons for this are not well understood. Seagrasses that grow

predominantly in the intertidal zone, such as those in New Zealand, must deal

with fluctuating irradiance while submerged, as well as while exposed to the air

during periods of low tide.

Photosynthetic rates of seagrass leaves are usually determined experimentally

as the response to increasing light levels from complete darkness (Beer et al.

2001). A number of parameters, such as the maximum rate of light saturated

photosynthesis and the intensity at which the onset of saturation occurs, can

then be calculated and used to describe the degree of acclimation to the light

environment of the target species at a given location. Photosynthetic rates of

intertidal Zostera have been recorded as becoming light saturated at an

irradiance intensity of c. 200 μmol photons m–2 s–1, both in New Zealand

(Schwarz 2004) and elsewhere (Vermaat & Verhagen 1996; Vermaat et al.

1997), which is consistent with acclimation to a high light environment

(Schwarz 2004). Such characteristics enable the plants to deal with occasionally

extremely high irradiance when exposed to the air during low tide.

A wide range of morphological and physiological responses to changes in light

intensity, at all levels of plant structure and function, have been reported for

Z. capricorni from Moreton Bay, Queensland, in seawater aquaria experiments

(Abal et al. 1994; Grice et al. 1996). For example, plants grown under high light

conditions were found to have smaller shoots, higher biomass, higher

productivity, lower leaf nitrogen content, and less chlorophyll-a and -b, than

plants grown under low light conditions (Abal et al. 1994).
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3.5.2 Nutrients

Light has generally been considered to be the primary resource that limits the

growth of most seagrasses, with nutrient (nitrogen and phosphorus) availability

regarded as a secondary factor (Short 1987; Hillman et al. 1989; Hemminga &

Duarte 2000; Touchette & Burkholder 2000; but see also Alcoverro et al. 2001).

However, there has been relatively limited research towards understanding the

nutritional ecology of seagrasses or their physiological responses.

Seagrasses can use nitrogen and phosphorus from both sediment pore-water

and the water column, the former generally being considered the primary

source (Short 1987; Hillman et al. 1989; Lopez et al. 1998; Hemminga & Duarte

2000). In general, seagrasses are considered to be nitrogen-limited when

growing in sandy or organic sediments, and phosphorus-limited in carbonate

sediments (Short 1987; Hemminga & Duarte 2000; Touchette & Burkholder

2000). Nutrient limitation of seagrass production has been demonstrated

experimentally for populations located at various sites around the world, with

evidence that seagrass morphology, physiology, growth, photosynthetic

performance, distribution and abundance, and seasonal cycles may be linked to

available nutrient resources (Harlin & Thorne-Miller 1981; Short 1987;

Fourqurean et al. 1995; Lee & Dunton 1999; Touchette & Burkholder 2000).

Many seagrasses respond favourably to low or moderate nitrogen or

phosphorus enrichment (Harlin & Thorne-Miller 1981; Williams 1990; Reusch

et al. 1994; Agawin et al. 1996; Reusch & Williams 1998; Peterson & Heck 1999,

2001; Udy et al. 1999). Following nitrogen enrichment at a site in Otago

Harbour, Ismail (2001) reported an increase in canopy height, below-ground

biomass and chlorophyll-a and -b content, but not in shoot density, above-

ground biomass, leaf growth rates or tissue carbon and nitrogen content in

Zostera, indicating that the plants may have been nutrient limited during the

summer. Udy & Dennison (1997a,b) reported changes in morphological and

physiological characteristics (e.g. increased growth and biomass, increased

total amino acid content of leaves, and increased tissue nutrient contents) of

Z. capricorni in response to elevated nitrogen and phosphorus levels in

Moreton Bay, Queensland.

The nutritional content of seagrass tissue has been used to infer nutrient

limitation for seagrass growth. Duarte (1990) has suggested that the growth of

seagrasses is likely to be limited by nitrogen when leaf-tissue nitrogen content is

below 1.8% dry weight or the atomic carbon:nitrogen ratio is above 20; or by

phosphorus when leaf-tissue phosphorus content is below 0.2% or the atomic

carbon:phosphorus ratio is greater than 474. While there are limited data

available for New Zealand, comparison of the leaf nitrogen and phosphorus

contents of seagrass collected from Coromandel Peninsula estuaries with

median values for seagrass beds, suggests that these plants may have been

slightly deficient in both nitrogen and phosphorus at some sites and during

some periods of the year, especially during the summer (Turner & Schwarz in

press). A similar tendency is inferred for Otago Harbour, where Ismail (2001)

presented results to show that in summer, pore-water ammonium

concentrations were below the threshold values that were suggested as limiting

for growth of Zostera marina by Dennison et al. (1987).
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Excessive nitrogen loading in the water column can inhibit seagrass growth and

survival. This may be an indirect effect resulting from stimulation of

phytoplankton and epiphytic algal growth and associated light reduction, or a

direct physiological effect resulting from high internal nitrogen concentrations

causing a metabolic imbalance (Burkholder at al. 1992; Van Katwijk et al. 1997;

Hemminga & Duarte 2000; Touchette & Burkholder 2000; Invers et al. 2004).

Compared with rates reported internationally, moderate rates of nitrogen

fixation (measured as acetylene reduction) have been reported in New Zealand

estuarine sediments in which Zostera plants were growing (mean ± 95%

confidence interval: 15.2 ± 2.8 μmol C
2
H

4
m–2 h–1), with rates of nitrogen

fixation being closely correlated with the dry weight of the roots (Hicks &

Silvester 1990). Hicks & Silvester (1990) suggested that nitrogen fixation may

contribute significantly to the nutrition of seagrass in these estuaries, with

inputs of 8.3 kg nitrogen ha–1 year–1 predicted for areas with Zostera compared

with 1.6 kg nitrogen ha–1 year–1 in adjacent open areas. However, the

assimilation of fixed nitrogen was not proven in this study, and the ecological

significance of nitrogen fixation in the context of associated de-nitrification in

New Zealand seagrass systems remains to be quantified.

3.5.3 Sediment

Seagrasses depend directly on sediment for nutrients and anchorage; thus

seagrass distribution and abundance is strongly related to sediment

characteristics. In their literature review, Batiuk et al. (2000) found that

seagrasses have a limited range in their ability to tolerate selected

sedimentological variables, including sediment grain-size (0.4%–30% fines:

< 64 μm), sediment organic matter content (0.4%–12%) and pore-water

sulphide concentrations (< 1 mM). Seagrasses themselves also have a marked

effect on the chemical and microbiological characteristics and dynamics in their

sediment environment through their production of detritus and the flux of

oxygen from their roots and rhizomes (Moriarty & Boon 1989; Hemminga &

Duarte 2000).

The relative proportion of above-ground (comprising shoots and leaves) to

below-ground (comprising roots and rhizomes) biomass differs from place to

place. For example, where Zostera grows in sandy sediment in Whangapoua

Harbour, Coromandel Peninsula, there were persistent root and rhizome layers

to a depth of 7 cm below the surface, and there was a higher relative proportion

of below-ground to above-ground biomass (Schwarz et al. 2004). In contrast, a

seagrass bed in much muddier sediments in Whaingaroa (Raglan) Harbour had

live rhizomes and roots to a depth of only 3 cm, and there was a lower relative

proportion of below-ground to above-ground biomass, despite the above-

ground biomass being similar at the two sites. There may be several possible

explanations for the differences in root development, but the most likely is

related to the characteristics of the sediment: because estuarine sediments are

periodically covered with water, they contain low levels of oxygen; these

oxygen-poor sediments can be a harsh habitat as, with ample organic matter,

sediment bacteria produce reduced compounds, such as sulphide, which are

toxic to plants (Moriarty & Boon 1989; Carlson et al. 1994; Mills & Fonseca

2003). Nevertheless, healthy seagrasses can counter this stress by transporting
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oxygen from their leaves to their roots, and using this for respiration and

nutrient uptake (Sand-Jensen et al. 1982). Some of the oxygen is also lost from

the roots to the surrounding sediment, which helps to maintain an oxidised

zone around the plant roots and reduces the likelihood of harmful toxins

accumulating (Carlson et al. 1994; Pederson et al. 1998; Terrados et al. 1999;

Hemminga & Duarte 2000; Azzoni et al. 2001; Enríquez et al. 2001).

In New South Wales and Queensland, Z. capricorni has generally been found to

grow better in coarse than fine sediments, with areas where Z. capricorni is

sparse being characterised by the presence of relatively fine sediments (Young

& Kirkman 1975; Larkum et al. 1984; Conacher et al. 1994b). However, coarser

sediments are generally lower in nutrients and organic matter, so that there is a

need for better developed nutrient absorptive systems at sites where sediments

become sandier (McKenzie 1994). McKenzie (1994) suggested that the increase

in sand at a site in Cairns Harbour might have contributed to observed decreases

in the distribution and biomass of Z. capricorni, because the availability of

nutrients affects growth, distribution, morphology and seasonal population

cycles. Zostera capricorni has also been found to grow best in reducing

substrates, so oxidised areas (e.g. sediment re-worked by wave-action) may not

be an optimal environment for colonisation by seedlings or for vegetative

growth (Larkum et al. 1984).

3.5.4 Tidal regime and aerial exposure

At the upper intertidal limit of seagrass distribution, environmental factors

other than the photosynthetically available radiation, including exposure to

desiccating winds or direct sunlight, restrict seagrass growth and productivity.

In New Zealand, Zostera is predominantly intertidal, and during periods of the

tidal cycle when the plants are exposed to air they can experience extended

periods of high light intensities and higher temperatures than found in the

surrounding water. Although exposure at low tide can be an important time for

photosynthetic gains for intertidal seagrasses (Vermaat et al. 1997; Schwarz

2004), long exposure times and the absence of a protective layer of water may

result in desiccation and photoinhibition due to high irradiance, which in turn

can lead to a decline in growth and productivity (Harrison 1982; Bulthuis &

Woelkering 1983b; Bulthuis 1987; Adams & Bate 1994; Erftemeijer & Herman

1994; McKenzie 1994; Björk et al. 1997, 1999; Hemminga & Duarte 2000;

Enríquez et al. 2002; Boese et al. 2003; Tanaka & Nakaoka 2004).

In three estuaries on the eastern Coromandel Peninsula, seagrass at sites with

moderate periods of emersion had greater biomass production than at sites with

extended periods of emersion (Turner & Schwarz in press). The differences in

observed biomass between sites could reflect site-specific differences in

elevation above mean low water, exposure times when low spring tides

coincide with daylight hours (especially during the summer), and tidal-flat

topography (which affects the way water drains from the beds at each of the

sites) (Turner & Schwarz in press). On intertidal platforms on the Kaikoura

Peninsula, Zostera patches on the low shore and associated with tide-pools had

larger leaf area indices and greater total biomass than patches further up the

shore or not associated with tide-pools (Ramage & Schiel 1999).
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3.5.5 Water movement

Based on an extensive review of the literature, Batiuk et al. (2001) reported that

seagrasses appear to have a limited range in their ability to tolerate water

movement and wave activity.

Various seagrass-bed attributes (e.g. bed fragmentation, continuity of cover,

patch size and shape, and complexity of patch perimeter), as well as attributes

of the plants themselves (e.g. biomass, shoot density, plant architecture, and

colonisation rates), have been found to be strongly related to the physical

setting of an area (Kirkman & Kuo 1990; Marbà et al. 1994; Robbins & Bell 1994;

Marbà & Duarte 1995; Fonseca 1996; Turner et al. 1996; Fonseca & Bell 1998;

Van Katwijk & Wijergangs 2004). The spatial configuration of seagrass beds,

which may vary from continuous cover over hundreds of metres to discrete

patches that are metres to tens of metres across the largest dimension, is

strongly related to the level of wind-generated wave action and currents

(Fonseca et al. 1983; Fonseca & Kenworthy 1987; Fonseca 1996; Turner et al.

1996; Fonseca & Bell 1998; Koch & Gust 1999; Frederiksen et al. 2004b).

Seagrass beds may be affected directly through impacts on bed development

(e.g. transportation of seeds and vegetative propagules, uprooting of seedlings,

and damage to mature plants), or indirectly through the erosion, transport and

deposition of sediment, nutrients or organic matter. Increased mechanical

disturbance associated with wave exposure and current speed may lead to a

reduction in the vegetative spread of the plants and the inhibition of seedling

colonisation, resulting in patchy seagrass beds.

Wind-generated wave dynamics and tidal currents are also important factors

influencing the physical, chemical and biological attributes of seagrass beds

(Pihl 1986; Fonseca & Kenworthy 1987; Murphey & Fonseca 1995; Fonseca

1996; Turner et al. 1999; Hovel et al. 2002; Moran et al. 2004).

3 . 6 T H E  S E A G R A S S  C O M M U N I T Y

Seagrasses are important in sustaining a wide range of plant and animal species.

The emergent leaves and subsurface root-rhizome system of seagrasses provides

greater physical heterogeneity and structural complexity than found in the

surrounding sediment (Howard et al. 1989; Hemminga & Duarte 2000).

Through habitat modification and the associated changes in local biological,

chemical and/or physical conditions, seagrasses may strongly influence the

structure and functioning of associated plant and animal communities. A sound

understanding of the functioning of seagrass communities is important if

seagrass habitats are to be managed successfully.

There is a large diversity and abundance of organisms associated with seagrass

habitats compared with unvegetated habitats. Seagrass communities typically

include epiphytes (microscopic organisms, single-celled plants, filamentous

algae, algal sporelings and encrusting algae), microfauna and sessile epifauna

that colonise the seagrass; algal films, macroalgae and sessile and mobile

epifauna on the sediment surface; infauna living in the sediment among the
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rhizomes; phytoplankton and zooplankton in the water column associated with

seagrass beds; and epibenthic fauna, which are larger mobile animals

(e.g. fish and crabs) associated loosely with the seagrass bed. The precise

components of the community will depend on the sediment type, salinity, tidal

position and location, as well as the seagrass species itself.

There is still relatively little understanding of the importance of seagrass habitat

for associated plant, invertebrate and fish communities in estuarine and shallow

coastal-water areas around New Zealand, although a small number of

quantitative investigations have been undertaken.

3.6.1 Benthic communities

It has been widely documented in international studies that seagrass habitat

supports greater macrofauna species diversity, abundance and biomass than

adjacent unvegetated, soft-sediment habitat, and that there are correlations

between increased faunal abundance and diversity and some measures of

seagrass structural complexity (e.g. shoot density and leaf length) (Virnstein et

al. 1983; Summerson & Peterson 1984; Posey 1988; Ansari et al. 1991;

Edgar et al. 1994; Heck et al. 1995; Boström & Bonsdorff 1997; Connolly 1997;

Mattila et al. 1999; Lee et al. 2001; Somerfield et al. 2002). A comparison of

macrofauna abundances in seagrass habitat with those in unvegetated habitats

from around the world demonstrates the habitat value of seagrass beds to

estuarine fauna: animal densities in seagrass beds are 2–25 times greater than in

adjacent unvegetated areas (Dunton 1998). However, the faunal assemblages

associated with seagrass beds are generally not specific to seagrass habitat, but

largely comprise species that are also found in other habitats. Furthermore,

other vegetated systems in the direct environment of seagrass beds may harbour

equally abundant and diverse or even richer assemblages. Therefore, although

seagrass beds provide valuable benthic substratum, they offer no exceptionally

favourable habitat compared with other habitats (Howard et al. 1989;

Hemminga & Duarte 2000; Spalding et al. 2003).

In New Zealand, studies of the animal communities associated with seagrass

beds and the adjacent unvegetated sediment have included meiofauna

(e.g. Hicks 1986, 1989; Bell & Hicks 1991) and macrofauna (e.g. Alderson 1997;

Woods & Schiel 1997; Turner et al. 1999; Berkenbusch et al. 2000; Van Houte-

Howes et al. 2004; and see review by Inglis 2003). From these studies, it has

been suggested that there is a greater abundance and diversity of macrofauna, as

well as different functional or taxonomic groups, within Zostera beds than in

the surrounding unvegetated sediments in New Zealand estuaries (see Inglis

2003). However, this generality has been challenged by a recent study of

macrofauna communities within seagrass beds and the adjacent unvegetated

sediment in Coromandel Peninsula estuaries (Van Houte-Howes et al. 2004).

The results from this study indicate that the presence of seagrass does have an

effect on macrofauna communities but that this effect is complex. Rather than

being a reflection of the presence or absence of seagrass per se, macrofaunal

community characteristics were found to vary with distance from the seagrass-

unvegetated sediment boundary, both within the seagrass bed itself and the

adjacent unvegetated sediment. These results emphasise the importance of
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understanding the linkages between habitats in heterogeneous estuarine

landscapes and their effects on the abundance, diversity and biomass of

macrofauna communities, as the effect of the seagrass itself may extend beyond

the margins of any one patch or bed.

Other New Zealand studies have resulted in similar conclusions. For example, a

study of the influence of seagrass on the recruitment of meiofaunal copepods in

a seagrass bed in Pauatahanui Inlet (near Wellington) found that variation in

landscape features and events that cause variation over the spatial scale of a

seagrass bed may produce localised differences in copepod densities (Bell &

Hicks 1991). This demonstrates that in order to understand the importance of

landscape patterns on seagrass fauna it is important to understand vegetation

patch dynamics as well as faunal responses. The results of a study of the

macrofauna communities associated with seagrass patches in Manukau Harbour

and Whangapoua Harbour (Coromandel Peninsula) demonstrated that the

spatial patterning of seagrass habitat at the landscape scale (e.g. fractal

dimension and patch isolation) can affect community composition,

independent of the patch-scale characteristics (e.g. patch size, seagrass biomass

and percentage cover) of the seagrass beds (Turner et al. 1999).

It is increasingly recognised that there is considerable variability in the faunal

assemblages associated with seagrass beds (Howard et al. 1989; Hemminga &

Duarte 2000). This may be a reflection of the varying physical-chemical

environment between seagrass beds (with respect to hydrodynamic conditions,

depth, etc.), the variable landscape setting of seagrass beds within the broader

coastal system, and that many species only spend part of their life-cycle

associated with seagrass beds, resulting in alternating periods of presence and

absence of a species.

3.6.2 Fish assemblages

One of the most widely cited functions of seagrasses is their role in providing

both habitat (e.g. seagrass leaves provide protection from predators) and

sources of food (e.g. organic matter produced by decaying seagrass and

epiphytic organisms) for fish, crabs and shrimps, including many species that

are ecologically or commercially important in other ecosystems (Heck &

Thoman 1984; Bell et al. 1988; Bell & Pollard 1989; Heck et al. 1989; Ferrell &

Bell 1991; Edgar & Shaw 1993, 1995a,b; Hoss & Thayer 1993; Connolly 1994b;

Eggleston et al. 1998; Jenkins & Wheatley 1998; Mattila et al. 1999; Hemminga

& Duarte 2000; Spalding et al. 2003; Kwak & Klumpp 2004). As with

invertebrate assemblages, there is great variability in fish species diversity and

abundances among seagrass beds (Hemmiga & Duarte 2000). This variability is

attributed to the vegetation structure of the beds and the extent of larval and

juvenile settlement in the beds, as well as post-settlement mortality and

migration processes, the location of the beds relative to other fish habitats and

the physical-chemical environment of the beds. Seagrass beds may, therefore,

vary considerably in terms of their value to fish assemblages.
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There have, however, been very few studies on the significance of seagrass

habitat to fish in New Zealand estuarine and coastal waters. Recent research in

New Zealand has shown that seagrass, especially that which usually remains

submerged at low tide, provides important nursery functions for a range of

juvenile fish species, especially snapper (Pagurus auratus) (Morrison & Francis

2001a,b).

3.6.3 Habitat inter-linkages

A number of international studies have demonstrated that seagrass habitat does

not exist in isolation and should not be viewed as separate, unconnected

habitat, but rather is part of a habitat mosaic with other habitats (Irlandi &

Crawford 1997; Micheli & Peterson 1999; Hemminga & Duarte 2000; Williams &

Heck 2000; Wahl 2001; Spalding et al. 2003; Pittman et al. 2004; Van Elven et al.

2004; Bloomfield & Gillanders 2005). Seagrass habitat is a component of, and

has a role in the functioning of, a wider suite of estuarine and coastal landscapes

(‘seascapes’), with linkages to both the surrounding unvegetated sand and mud,

and other habitats (e.g. saltmarsh, mangroves, macroalgae and oyster reefs).

These interconnections between ecosystem components are mediated through

the transfer of organic matter and nutrients (Connolly et al. 2005), and animal

movements: many marine animals have been found to move between different

habitats on a daily or seasonal basis, or during various parts of their life-cycles

(Orth & Van Montfrans 1987; Bell & Pollard 1989; Ferrell & Bell 1991; Sogard &

Able 1994; Jenkins & Wheatley 1998; Hemminga & Duarte 2000; Linke et al.

2001; Nagelkerken & Van der Velde 2004). The spatial proximity of seagrass

beds to other habitat types may have a significant effect on species diversity,

abundance and distributions (Sogard 1989; Lipcius et al. 2005).

The effective management and conservation of seagrass habitat in New Zealand

will require consideration of the relationships between seagrass and other

components of the estuarine and coastal ecosystems of which it is a part.

Understanding the functional roles of linkages between habitats in

heterogeneous landscapes, and their effects on the structure and dynamics of

estuarine and coastal communities, is essential if we are to manage entire

ecosystems. Only by maintaining the total landscape to which seagrass belongs

can we maintain the resilience of seagrass habitats and the diversity of

associated communities (Virnstein 1995; Hovel & Lipcius 2001).
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4. Seagrass distribution and
abundance in New Zealand

Seagrass is predominantly intertidal in New Zealand, forming extensive

monospecific beds or mosaics of discrete patches surrounded by unvegetated

sediments on estuarine sand-flats at mid- to low tide levels (Turner et al. 1996,

1999; Van Houte-Howes et al. 2004). The beds may extend as subtidal fringes

into the shallow subtidal areas of sheltered estuaries, and permanently

submerged beds of seagrass have been recorded around offshore islands

(e.g. Slipper Island and Great Mercury Island off the eastern Coromandel

Peninsula) (Grace & Grace 1976; A-MS, pers. obs.). Seagrass beds also occur in

association with sediment-filled crevices and tide-pools on open-coast intertidal

platforms around the eastern coast of New Zealand (e.g. Te Angiangi Marine

Reserve, Kaikoura Peninsula), where the seagrass is interspersed with algal beds

and biological assemblages more characteristic of rocky, intertidal communities

(Woods & Schiel 1997; Ramage & Schiel 1998, 1999). Spalding et al. (2003)

estimated that there are 44 km2 of seagrass habitat in New Zealand. This is small

compared with other regions: for example, there is an estimated 71 400 km2 in

eastern Australia and 30 000 km2 in Indonesia.

While Zostera is known to occur throughout the mainland coast of New

Zealand, its distribution is not well documented. A recent review has suggested

that while widespread, seagrass is likely to be a relatively uncommon habitat in

most estuarine systems around New Zealand, particularly those that are shallow

and turbid (Inglis 2003).

4 . 1 T R E N D S  I N  S E A G R A S S  D I S T R I B U T I O N ,  E X T E N T
A N D  C O N D I T I O N

Although seagrass systems are typically permanent over periods of years and

decades, they can be highly dynamic, expanding into new areas and declining in

others over relatively short timeframes (Clarke & Kirkman 1989; Olesen & Sand-

Jensen 1994b; Turner et al. 1996; Spalding et al. 2003). Few studies have

quantified temporal changes in the distribution, spatial extent (area) and

condition of seagrass habitat in New Zealand in any detail, and there is a paucity

of information on natural changes between years. In addition, in only a few

instances has there been an evaluation of the contribution of different

environmental factors and coastal processes to changes in seagrass distribution,

extent and condition, and the ecological consequences of such changes have

not been studied.

There have been few documented instances of seagrass loss in New Zealand.

Available information suggests that seagrass habitat was once more widespread

around New Zealand, and that both intertidal and subtidal areas of seagrass have

declined at a number of localities, with the greatest losses occurring since the

1920s/1930s (MfE 1997; see Inglis 2003 for a review). Overall losses are
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probably much greater than have been estimated to date. Historical information

on seagrass distribution and extent is valuable for understanding the patterns of

natural or human-induced (anthropogenic) change in an area, and is also useful

for assessing the ecological significance of any new losses. However, the

availability of reliable aerial photography and good quality field data limits the

analysis of historical change to the last 40–50 years. This is an important

limitation, as it is too short a time period to detect long-term cycles.

The causes of the documented decline in seagrass habitat around New Zealand

are generally unclear, and have been variously attributed to a range of different

human activities and natural events (MfE 1997; Inglis 2003). These include

increased sedimentation and turbidity, the discharge of untreated sewage and

industrial waste, and coastal development. Changes in sediment regimes (i.e.

turbidity, sedimentation rates, or sediment textural characteristics), either as a

result of land-based or coastal activities, have been identified as one of the most

serious threats to the integrity of New Zealand’s estuarine and coastal

ecosystems (MfE 1997; Morrisey & Green 2000; Inglis 2003). Loss of Z.

capricorni beds in eastern Australia, where up to 50% of the area of seagrass

beds in numerous New South Wales estuaries has been reported as lost, has

been attributed to smothering by sediment, light reduction, and dredging and

construction (Walker & McComb 1992; Short & Wyllie-Echeverria 1996;

Kirkman 1997; Seddon et al. 2000; Coles et al. 2003).

Even fewer studies have documented incidences where seagrass may have

retained its historic coverage or increased in distribution, or the environmental

conditions prevailing at any such localities. There are positive indications that

seagrass beds are expanding in some New Zealand estuaries where they had

formerly been reduced, as a consequence of improvements in water quality

(Inglis 2003). However, there needs to be a better understanding of the

requirements and potential for recovery after loss.

To effectively manage and conserve seagrass habitat, mapping and monitoring

must be initiated. The relative paucity of information on the extent of natural

changes in seagrass populations means that it is difficult to separate these from

the impacts of anthropogenic activities.

4 . 2 E X A M P L E S  O F  S E A G R A S S  D E C L I N E  I N  N E W
Z E A L A N D

Comparisons of historical aerial photographs of Tauranga Harbour have shown

that the total area of seagrass beds has declined from 4437 ha in 1959 to 2933 ha

in 1996, which is a reduction of 34% over a period of less than 40 years (Park

1999a,b, 2001). The area of greatest decline has been in the enclosed upper

reaches of the western margins of the harbour, where there has been a 69%

reduction in the area of seagrass (Park 1999b, 2001). Subtidal areas have

experienced the greatest loss: 90% of the subtidal beds in the whole harbour

and 95% of those in the southern harbour have been lost (Park 1999b). Seagrass

beds in the shallow subtidal areas and sub-estuaries with large catchments have

been affected more than those in areas near the harbour entrance and in sub-

estuaries with little catchment run-off (Park 1999a,b). The available information
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indicates that sediment, and possibly nutrient loading, has played a major part

in the documented changes in seagrass abundance in the harbour (Park 1999b,

2001). Other causes of seagrass loss in the harbour include reclamation of the

seafloor and grazing by the introduced black swan (Cygnus atratus) (Park

1999a,b). Park (1999a,b) suggested that the decline in seagrass beds in the

harbour may be slowing, and in some areas seagrass may be increasing in

abundance. This is attributed to improvements in environmental practices,

particularly the removal of point nutrient sources to the harbour (Tauranga

sewage was discharged to the harbour until 1994) and reductions in the amount

of land run-off and associated nutrients and sediments (Park 1999a,b).

Comparisons of historical aerial photographs of Whangamata Harbour

(Coromandel Peninsula) indicate that the intertidal seagrass beds increased in

extent from 79 ha in 1944 to 101 ha in 1965, an increase in area of 28%

(Cawthron Institute 2000). The beds subsequently declined in spatial extent to

60 ha in 1998, a decrease of 41% (Cawthron Institute 2000). As well as a change

in the total extent of seagrass beds in the harbour, the distribution of the

remaining beds also changed over the same time period, declining in the upper

reaches and increasing in the middle reaches of the estuary (Fig. 1). This decline

in spatial extent and change in distribution has been attributed to the expansion

of mud-flats, which has reduced the amount of suitable habitat for seagrass

survival. Some of the areas where seagrass occurred historically have now been

completely overgrown by mangroves (Fig. 1).
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Figure 1.   Changes in the
distribution and extent

of seagrass (Zostera
capricorni) and mangrove

habitat in Whangamata
Harbour between 1944

and 1998. Based on aerial
images from Cawthron

Institute (2000).
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5. Threats to seagrass

There have been no recent assessments of the overall condition of New

Zealand’s estuaries and therefore of the contemporary threats to seagrass

habitats (Inglis 2003). The predominantly estuarine and near-shore coastal

distribution of seagrass in New Zealand means that seagrass is likely to be

particularly vulnerable to anthropogenic disturbance associated with

catchment land-use activities and coastal development. In eastern Australia,

estuarine seagrass communities are increasingly considered to be the most

threatened of the seagrass habitats (Coles et al. 1989; Lee Long et al. 1996; Coles

et al. 2003).

Declines in seagrasses have been occurring worldwide, with increasing

frequency during recent decades (Walker & McComb 1992; Short & Wyllie-

Echeverria 1996; Hemminga & Duarte 2000; Duarte 2002; Green & Short 2003).

International studies have demonstrated that seagrass beds are subject to a

variety of natural and anthropogenic disturbances, such as storm damage,

grazing by herbivores and disease, as well as threats caused by point and non-

point sources of pollution, decreasing water clarity, excessive nutrients,

increased sedimentation and direct mechanical damage (e.g. dredging and

propeller scarring). In many cases, several factors interact to make the process

of loss more complex, and natural disturbances may be exacerbated by

interactions with anthropogenic perturbations (Pulich & White 1991;

Burkholder et al. 1992; Walker & McComb 1992; Van Lent et al. 1995; Short &

Wyllie-Echeverria 1996; Kirkman 1997; Livingston et al. 1998; Moore & Wetzel

2000; Spalding et al. 2003; Walker 2003; Ibarra-Obando et al. 2004).

The most ubiquitous and pervasive cause of seagrass decline is reduction in the

amount of photosynthetically available radiation. There are three major factors

that can cause a reduction in light availability:

• Chronic increases in dissolved nutrients, leading to the proliferation of

phytoplankton, macroalgae or algal epiphytes on seagrass leaves and stems

(eutrophication)

• Chronic increases in suspended sediments, leading to increased turbidity

and potentially increased sedimentation

• Pulsed increases in suspended sediments and/or phytoplankton, which

cause a dramatic reduction in light penetration for a limited time (Walker &

McComb 1992; Walker 2003)

The run-off of nutrients and sediments into estuarine and coastal areas as a

result of human activities on land is considered to represent the greatest threat

to seagrasses worldwide (Hemminga & Duarte 2000; Coles et al. 2003; Green &

Short 2003; Walker 2003).

Relatively short-term stressful conditions, especially during critical periods, can

have long-term consequences for seagrasses, even after environmental

conditions have improved. Therefore, it is necessary to consider the impacts of

pulsed or extreme events as well as changes in average conditions when

determining the threats to seagrass survival (Moore et al. 1997; Longstaff &

Dennison 1999).
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5 . 1 A N T H R O P O G E N I C  P R O C E S S E S

Seagrasses are particularly susceptible to anthropogenic disturbances, including

coastal developments, such as jetty, marina and harbour construction; land

reclamation; industrial pollution and storm-water run-off along shorelines; run-

off from catchment activities; boat moorings and dredging; and various

recreational and commercial activities (Kemp et al. 1983; Cambridge &

McComb 1984; Shepherd et al. 1989; Walker & McComb 1992; Nienhuis et al.

1996; Hemminga & Duarte 2000; Kendrick et al. 2002; Green & Short 2003;

Walker 2003; Duarte et al. 2004). The frequency of these activities and their

effects on seagrasses are likely to increase with increasing human populations

and use of estuaries and coastal areas.

5.1.1 Increases in sediment loading

The growth and productivity of seagrasses relies significantly upon the amount

of photosynthetically available radiation that penetrates the water column to

reach submerged leaves (Kenworthy & Haunert 1991; Dennison et al. 1993).

When sediment loading becomes excessive, there is increased turbidity in the

water column overlying the seagrasses and reduced light penetration through

the water, resulting in reduced photosynthesis and growth, and ultimately

declines in seagrass survival (Cambridge & McComb 1984; Larkum et al. 1989;

Shepherd et al. 1989; Giesen et al. 1990; Onuf 1994; Moore et al. 1997; Vermaat

et al. 1997; Bach et al. 1998; Hall et al. 1999; Longstaff & Dennison 1999;

Hemminga & Duarte 2000; Ingram & Dawson 2001; Coles et al. 2003; Spalding

et al. 2003; Walker 2003). Seagrass species vary widely in their tolerance to light

deprivation, and the nature of the response (e.g. physiological or

morphological responses) is dependent on the intensity and duration of light

reduction, as well as the influence of other environmental conditions (Longstaff

& Dennison 1999).

In extreme cases, excessive sediment loads may result in the actual smothering

and burial of seagrasses, especially in low wave-energy environments, where

fine sediments are deposited (Kirkman 1978; Shepherd et al. 1989; Duarte et al.

1997; Manzanera et al. 1998; Terrados et al. 1998). Layers of sediment that settle

on top of the plants can have the same effect as increases in turbidity, by

preventing light from reaching the plants. Most seagrasses can survive moderate

inundations of sediment, with mortality occurring beyond a given threshold of

sediment accretion (Fonseca 1996; Duarte et al. 1997; Vermaat et al. 1997;

Manzanera et al. 1998). The effects of sediment smothering are dependent on

the properties of the sediment, the duration of sediment inundation, the

volume of sediment and the depth to which the plant is smothered, as well as

the morphology of the species involved (Clarke & Kirkman 1989). Fonseca

(1996) reported that Zostera beds only suffered significant shoot mortality

when 50% of the plant’s height was buried under sediment for c. 3 weeks.

Vermaat et al. (1997) found that Mediterranean Zostera noltii was able to

redirect the horizontal rhizome to survive burial, and that plants successfully

grew through a sediment layer of 2 cm in 4 months; they recommended, as a

practical range, that for the maintenance of seagrass beds, short-term

sedimentation occurring over time spans of < 2 months should not exceed
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5 cm. Further studies are needed to predict the capacity of New Zealand

Zostera to respond to changes in sedimentation patterns.

Once an initial decline has begun, further losses may follow due to feedback

effects. For example, sediments will no longer be stabilised and thus will erode

more quickly, resulting in the loss of more seagrass, reduced recolonisation by

seagrasses and increased burial of plants (Shepherd et al. 1989; Giesen et al.

1990; Walker & McComb 1992). The turbidity resulting from the increased

sediment loads in the water can also lead to further degradation of the beds.

Catchment land-use activities, such as land clearance for coastal developments,

forestry and agricultural purposes, are generally considered to be the primary

causes of increases in the rates of soil erosion and consequently in sediment

transport into estuarine and coastal waters (MfE 1997; Morrisey & Green 2000).

It is currently difficult to know what effect catchment practices have had on

seagrass in New Zealand, although it is likely that poor catchment practices

have increased the stresses on seagrass communities, and contributed to their

overall decline in a number of areas (Park 1999a,b, 2001; Inglis 2003).

5.1.2 Increases in nutrient loading (cultural eutrophication)

Increases in nutrient loading, particularly nitrogen, may arise from land-based

point (e.g. sewage effluent and urban/stormwater outfalls) and non-point

(e.g. groundwater seepage from septic systems and agricultural run-off) sources

entering estuarine and coastal waters. In some cases, where seagrass growth is

limited by available nutrients, localised increases in nutrient levels may be

favourable for seagrasses (Orth 1977a; Harlin & Thorne-Miller 1981; Fourqurean

et al. 1995; Udy et al. 1999). More often, however, increased nutrient loading is

cited as a major cause of the decline, or lack of recovery, of seagrass beds

(Nienhuis 1983; Orth & Moore 1983; Cambridge et al. 1986; Neverauskas

1987b; Shepherd et al. 1989; Burkholder et al. 1992; Lapointe et al. 1994; Short

& Burdick 1996; Short et al. 1996; Hemminga & Duarte 2000; Deegan 2002;

Kendrick et al. 2002; Spalding et al. 2003; Walker 2003; Hale et al. 2004).

A variety of detrimental effects associated with increases in nutrient levels have

been identified. Increases in nutrient loading in estuarine and coastal waters

can promote the growth of phytoplankton, epiphytic algae and bottom-living

and free-floating macroalgae (eutrophication) (Harlin & Thorne-Miller 1981;

Bulthuis & Woelkerling 1983a,b; Borum 1985; Cambridge et al. 1986;

Silberstein et al. 1986; Neverauskas 1987a; Shepherd et al. 1989; Lapointe et al.

1994, 2004; Onuf 1996; Frankovich & Fourqurean 1997; Valiela et al. 1997;

Walker 2003). This enhanced growth will reduce the amount of light reaching

seagrass beds through either direct shading or increases in water-column

turbidity, which will in turn reduce the plants’ photosynthetic capability and

thus deplete storage materials, with negative impacts on seagrass growth,

productivity and distribution (Harlin & Thorne-Miller 1981; Van Montfrans et al.

1984; Borum 1985; Silberstein et al. 1986; Shepherd et al. 1989; Walker &

McComb 1992; Short et al. 1996; Cardoso et al. 2004; Irlandi et al. 2004). In

addition, the increased growth of epiphytes can have other impacts on

seagrasses, such as reducing the diffusion of gases and nutrients to seagrass

leaves (Borowitzka & Lethbridge 1989; Shepherd et al. 1989; Walker 2003;

Irlandi et al. 2004).
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The inter-relationship between grazing invertebrates and epiphyte abundance

on seagrasses may also contribute to seagrass loss. In the presence of grazers

there may be a substantial reduction in epiphyte biomass, with concomitant

effects on the maintenance of growth, productivity and depth distributions of

seagrasses (Howard & Short 1986; Shepherd et al. 1989; Hemminga & Duarte

2000; Hughes et al. 2004; Frankovich & Zieman 2005; Hays 2005). However, in

the absence of grazing invertebrates, or where there is a rapid accumulation of

nutrients leading to growth rates of epiphytes that are too high to allow control

by grazers, there may be a reduction in seagrass growth rate and productivity.

Eutrophication may not only result in a reduction in light availability, but also

an increased loading of sediments with organic matter and the development of

highly reducing conditions in the sediment, anoxia of bottom waters, and an

increase in nutrient concentrations to potentially toxic levels, each of which

can have a negative effect on seagrass functioning (Hemminga & Duarte 2000).

The magnitude of nutrient loading is largely unknown for most of New

Zealand’s estuarine and coastal areas. However, continued increases in nutrient

loading may result in long-term and/or irreversible effects on estuarine and

coastal ecosystems, including seagrasses, as has been reported elsewhere

(Howarth et al. 2002; Seitzinger et al. 2002). Specific examples include Moreton

Bay, Queensland (Abal et al. 2003; Tarte 2004) and Chesapeake Bay, Virginia

(Batiuk et al. 2000). The well-documented and negative responses of seagrasses

to nutrient enrichment elsewhere in the world suggest that management action

to restrict the release of nutrients from point and non-point sources to coastal

waters in New Zealand would be warranted.

5.1.3 Direct physical habitat disturbance and mechanical damage

Activities such as the construction of bulkheads, groynes, breakwaters, piers,

docks, pipelines and other hard structures, land reclamation, infilling, dredging,

and the disposal of dredged spoil for coastal developments have been widely

recognised as the major anthropogenic disturbances contributing to the

immediate loss of seagrass habitat (Cambridge & McComb 1984; Larkum & West

1990; Loflin 1995; Burdick & Short 1999; Hemminga & Duarte 2000; Kendrick

et al. 2002; Green & Short 2003; Spalding et al. 2003; Walker 2003). While

seagrass loss due to direct physical disturbance is generally relatively localised

in extent when compared with the more widespread changes associated with

sediment and nutrient inputs, it may nevertheless be significant.

The direct and immediate effects of dredging through or near seagrass beds

include physical disturbance and removal of the beds, as well as seagrass

mortality from excessive burial. However, the indirect effects of dredging

activities are equally important. Indirect losses often arise from the disturbance

of sediments during dredging operations, which results in increased turbidity

and suspended sediment loads in the water column (Quammen & Onuf 1993;

Onuf 1994). While periods of reduced water quality may be temporary and may

not have long-term impacts on seagrasses, if construction or dredging activity

affects the hydrodynamic characteristics of a site (such as depth profile, current

direction or velocity), the long-term survival of seagrass beds may be threatened

(Cambridge et al. 1986; Giesen et al. 1990; Larkum & West 1990; Onuf 1994;

Ingram & Dawson 2001); for example, the loss of seagrass in Stanley Bay,
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Auckland Harbour, is believed to be linked to the construction of tide

deflectors, which caused the formation of a tidal stream (Hounsell 1935, cited

in Dromgoole & Foster 1983). Dredging activity may also alter sediment

dynamics, resulting in the mobilisation of sediment contaminants, and

modification of sediment chemistry and nutrient availability (Duarte et al.

2004). In addition, dredging may result in sedimentation of rich organic

material; the decomposition of this, combined with reductions in plant

productivity (i.e. small root-zone oxygen flux), can result in toxic

concentrations of sulphide in the root-zone, which has negative impacts on

seagrass biomass and survival (Eldridge et al. 2004).

One of the most direct adverse effects on seagrass beds is the damage caused by

recreational boating activities (e.g. cutting by propellers, propeller wash,

anchor and mooring damage, and boat groundings) which may result in

significant, localised impacts on the physical integrity of seagrasses (Zieman

1976; Walker et al. 1989; Hastings et al. 1995a,b; Dawes et al. 1997; Creed &

Filho 1999; Francour et al. 1999; Spalding et al. 2003; Milazzo et al. 2004). For

example, propeller scarring can create a continuous line of seagrass damage

that fragments the seagrass bed and increases the bed edge, which is vulnerable

to erosion; this results in further scouring and deepening of the scoured area

(Zieman 1976; Walker et al. 1989). As a consequence of increased bed

fragmentation and bed-edge habitat, there may also be effects on associated

animal communities (see Irlandi 1997; Eggleston et al. 1999; Frost et al. 1999;

Bell et al. 2001; Bologna & Heck 2002; Hovel & Lipcius 2002). The potentially

long-term negative impact of recreational boating activities on seagrass habitat

has long been recognised internationally (Zieman 1976; Walker et al. 1989), and

the cumulative impacts of such events can lead to the large-scale loss of seagrass

beds from heavily trafficked areas (Francour et al. 1999). However, there is little

information regarding the extent of any effect of recreational boating activities

in New Zealand, and the areas of greatest potential impact have not been

identified.

Other activities relating to boat operations have also been reported to impact

on seagrasses, including the construction of docks, which shade the seafloor

and prohibit light penetration (Loflin 1995; Burdick & Short 1999; Shafer 1999).

Some fishing activities may also impact on seagrass beds (Fonseca et al. 1984;

Peterson et al. 1987; Meyer et al. 1999; González-Correa et al. 2005; Neckles et

al. 2005). For example, harvesting of scallops by trawling or dragging through

submerged seagrass beds may disturb the beds either through direct removal of

seagrass or through increased turbidity.

Intertidal seagrasses are vulnerable to damage by activities such as trampling by

humans and stock, horse riding, and off-road driving (Miller 1998; Ramage &

Schiel 1999).

5.1.4 Pollutants

Pollution of coastal environments, either from point or diffuse sources, can

result in significant changes in water and sediment quality, which in turn can

influence seagrass beds. There is little or no information about the effects of

toxic compounds on the growth and survival of seagrass in New Zealand

estuarine and coastal areas. The relatively limited information available from
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international studies suggests that heavy metals, antifoulants and organic

booster biocides, oil and chemical oil dispersants, organic pollutants, and

herbicides are all potentially harmful (Cambridge et al. 1986; Ward 1989; Short

& Wyllie-Echeverria 1996; Bester 2000; Hemminga & Duarte 2000).

A number of recent studies have assessed the toxicological impacts of

pollutants (including herbicides, heavy metals and petrochemicals) on

Z. capricorni in coastal areas of eastern Australia. Results have indicated that

anthropogenic pollutants have the capacity to impact on seagrass physiology

(e.g. photosynthetic potential and amino acid content), even in acute exposure

events (e.g. Haynes et al. 2000; Prange & Dennison 2000; Macinnis-Ng & Ralph

2002, 2003, 2004).

5.1.5 Introduced species

The introduction of exotic marine species, either deliberately or via ships’ hulls

or ballast water, presents a potential threat to seagrasses. Introduced species

may become established and encroach upon local seagrass communities, with

potentially significant negative effects on ecological function and biodiversity.

While there appears to be no information available about the effects of

introduced species on seagrass in New Zealand, international studies have

demonstrated that effects may occur. For example, seagrasses in Lindisfarne

National Nature Reserve in north-east England have declined through a

combination of a change in sedimentation pattern and encroachment by cord-

grass (Spartina anglica) (Percival et al. 1998). In California, the Asian mussel

(Musculista senhousia) has been shown to have variable effects on Z. marina,

with dense mats of the bivalve impeding rhizome growth and vegetative

propagation, but possibly enhancing leaf growth by pseudofaecal deposition

(Reusch 1996; Reusch & Williams 1999; Williams & Heck 2000).

Die-back within beds of the seagrass Posidonia oceanica in the Mediterranean

has been associated with invasion by the ‘tropical’ strain of the green seaweed

Caulerpa taxifolia, which exhibits rapid vegetative growth, increases organic

matter deposition, and produces toxic secondary metabolites that inhibit

interspecific competitors (De Villèle & Verlaque 1995); this species is included

in the Ministry of Fisheries’ list of unwanted organisms, and has been identified

as potentially causing serious problems should it invade New Zealand’s marine

environment (Ministry of Fisheries n.d.).

5.1.6 Global climate change

The effects of long-term climate change on seagrasses are not straightforward to

predict, but they are likely to be significant. Potential impacts are likely to arise

from rising sea levels, leading to longer submergence periods; changing tidal

regimes, which have implications for light availability, exposure at low tide and

water column turbidity; increased coastline regression and sediment erosion

associated with sea-level rise; temperature increases, which could reduce

growth and productivity, resulting in die-back of species at the upper limits of

their thermal tolerance, and favouring conversion of seagrass areas to mangrove

communities and enhancing the growth of algae and phytoplankton; localised

decreases in salinity; damage from enhanced levels of ultraviolet radiation; and
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unpredictable impacts from changes in the distribution and intensity of

extreme events, which may result in an increase in direct physical disturbance

of seagrass beds as well as an increase in sediment delivery to estuarine and

coastal areas (Short & Neckles 1999; Hemminga & Duarte 2000; Duarte et al.

2004). In contrast, an increase in atmospheric carbon dioxide could lead to

higher concentrations of carbon dioxide in seawater, which in turn could

increase the productivity and depth range of seagrass.

5 . 2 N A T U R A L  P R O C E S S E S

5.2.1 Meteorological events

Threats to seagrasses are not limited to anthropogenic factors. Storms, heavy or

prolonged rains, and floods are examples of natural disturbances that can affect

seagrass beds, especially if there is significant sediment resuspension and

redistribution (Patriquin 1975; Birch & Birch 1984; Kirkman 1985; Shepherd et

al. 1989; Kirkman & Kuo 1990; Larkum & West 1990; Fletcher & Fletcher 1995;

Preen et al. 1995; Reusch & Chapman 1995; Hemminga & Duarte 2000; Cabello-

Pasini et al. 2002; Coles et al. 2003; Kendall et al. 2004). Increased turbidities

are often associated with increased sediment loads following periods of intense

rainfall and sediment resuspension by wind- and tide-driven water turbulence.

Natural disturbances may be exacerbated by interactions with anthropogenic

disturbances, so that exact causal factors are difficult to ascertain; for example,

catchment land-use practices may exacerbate the effects of natural catastrophic

events through increased soil erosion and nutrient run-off (Preen et al. 1995).

Water motion, generated from tides and winds, may also have a measurable

effect on the growth and distribution of seagrasses by scouring the seafloor and

eroding sediments, and damaging or uprooting seeds and mature plants

(Patriquin 1975; Spalding et al. 2003).

Extensive losses of shallow subtidal and intertidal seagrasses have also been

documented following the extreme conditions associated with hot El Niño

summers (Seddon et al. 2000).

5.2.2 Grazing and bioturbation

Grazing by waterfowl, herbivorous fish and invertebrates, and in tropical

systems by turtles, dugongs and manatees, is another form of disturbance that

may result in reduced leaf cover or loss of whole plants, causing natural

fluctuations in seagrass populations (Ogden 1976; Jacobs et al. 1981; Cambridge

et al. 1986; Klumpp et al. 1989; Larkum & West 1990; Valentine & Heck 1991;

Rose et al. 1999; Hemminga & Duarte 2000; Spalding et al. 2003). Extensive

intertidal seagrass beds in New Zealand estuaries provide important grazing

areas for waterfowl. For example, the black swan is one of the primary direct

grazers on seagrass in New Zealand. The swans may crop only the leaves, or

they may uproot the plants and create bare patches in the bed that are up to 1 m

across (Byrom & Davidson 1992; Sagar et al. 1995; Israel & Fyfe 1996; Ismail &

Israel 1997; Park 1999a,b; Ismail 2001).
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Bioturbation, as a result of the activities of animals (e.g. burrowing, locomotion

and feeding) in seagrass beds, may also reduce seagrass cover or slow down

spread and colonisation (Orth 1975; Suchanek 1983; Philippart 1994; Valentine

et al. 1994; Philippart & Dijkema 1995; Townsend & Fonseca 1998; Hemminga

& Duarte 2000; Dumbauld & Wyllie-Echeverria 2003; Spalding et al. 2003). For

example, birds, crabs and rays may disturb roots and rhizomes, and can tear

apart seagrass leaves as they forage for buried food. In addition, the elevated

levels of biologically enhanced sediment transport can reduce the light

available for photosynthesis or physically smother seagrasses. The

destabilisation and loss of patches of Zostera on intertidal platforms on the

Kaikoura Peninsula may have been exacerbated by the mud crab

Macrophthalmus hirtipes, which burrows into the sediment of patches,

particularly along edges bordering tide-pools, and feeds on seagrass plants

(Woods & Schiel 1997).

It is rare for grazing and bioturbation activities to disrupt seagrass beds over

large areas (Spalding et al. 2003).

5.2.3 Wasting disease

Pathogenic micro-organisms can also impact seagrass populations. A wasting

disease caused by the marine slime mould Labyrinthula zosterae is widely

considered to have contributed to extensive damage to North Atlantic

populations of Z. marina during the 1930s, and to a more localised and less

severe epidemic along the eastern coast of North America in the 1980s

(Den Hartog 1996). While there is some evidence that Labyrinthula is often

present in Z. marina, and that it plays a part in the initial decomposition of

aged plants (Den Hartog 1996), recent investigations have clearly demonstrated

that Labyrinthula is not only a secondary infection of senescent leaves or an

indication of decomposition in Z. marina but is also a primary pathogen of this

species (Ralph & Short 2002). Under light and temperature stress, it can

develop precociously in younger plant parts, causing the symptoms of wasting

disease (Den Hartog 1996). It is now widely believed that a decline in the health

of seagrasses as a result of adverse environmental conditions or anthropogenic

stresses such as nutrient loading, light attenuation and physical disturbance,

may increase the susceptibility of seagrasses to the disease (Den Hartog 1987,

1996; Short et al. 1987, 1988).

In the late 1950s/early 1960s, widespread die-off of Zostera in a number of

harbours around New Zealand following symptoms of wasting disease was

linked to the presence of L. zosterae (Armiger 1964; Armiger 1965, cited in

Inglis 2003). Subsequent studies have reported the occurrence of Labyrinthula

in other seagrass populations around New Zealand. For example, winter

senescence and the abscission of older leaves in patches of Zostera on intertidal

platforms on the Kaikoura Peninsula may have been exacerbated by infection by

Labyrinthula (Ramage & Schiel 1999). Inglis (2003) suggests that occasional

recurrent outbreaks of wasting disease are likely in New Zealand Zostera

populations, and that further study is required to understand the epidemiology

of these outbreaks and whether they are exacerbated by human activities.
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6. Consequences of loss or
degradation of seagrass

Although seagrass losses have been well documented internationally, the

consequences of this loss are generally less well understood.

With the loss of the seagrass root-rhizome system, sediments are more easily

resuspended, resulting in an increased turbidity and reduced light availability

(Shepherd et al. 1989; Larkum & West 1990; Kenworthy & Haunert 1991;

Walker & McComb 1992; Rose et al. 1999; Morris & Virnstein 2004; Newell &

Koch 2004). The loss of seagrasses may also be accompanied by changed

patterns of sediment erosion and accumulation (Christiansen et al. 1981;

Cambridge & McComb 1984; Shepherd et al. 1989; Thayer et al 1994; Fonseca

1996; Newell & Koch 2004). These secondary conditions may exacerbate the

impacts of seagrass loss, and may result in a reduction in the recovery process in

areas where there has been widespread seagrass loss.

Loss of seagrass habitat will mean loss of estuarine and coastal ecosystem

productivity. The consequences for secondary production under conditions of

seagrass decline are generally not well understood, but there is the potential for

declines in species abundances and loss of species diversity of seagrass-

associated flora and fauna, and consequently changes in community structure

and ecosystem functioning (Cambridge & McComb 1984; Bell & Pollard 1989;

Edgar et al. 1994; Thayer et al. 1994; Tolan et al. 1997; Eggleston et al. 1998;

Terrados et al. 1998; Matheson et al. 1999; Rose et al. 1999; Asmus & Asmus

2000; Deegan 2002; Vanderklift & Jacoby 2003; Cardoso et al. 2004; Bloomfield

& Gillanders 2005). The significance of the loss of seagrasses will be dependent

on site-specific relationships between fauna and seagrasses.

7. Seagrass recovery

The nature, intensity and the frequency, timing and/or duration of a

disturbance event will influence both the extent of seagrass loss and the timing

of recovery. With increasing anthropogenic pressures on coastal ecosystems,

and their negative effects on seagrass communities, an understanding of the

recovery process is essential in developing strategies to deal with potential

disturbances.

Seagrass loss can often occur rapidly, with large changes in distribution and

abundance over time-scales of as little as weeks or months (Kirkman 1978;

Nienhuis 1983; Clarke & Kirkman 1989; Shepherd et al. 1989; Thayer et al.

1994; Short et al. 1996; Longstaff et al. 1999; Seddon et al. 2000; Frederiksen et

al. 2004a; Morris & Virnstein 2004). While recovery can similarly be relatively

rapid when suitable environmental conditions are present (Clarke & Kirkman

1989; Kirkman & Kuo 1990; Creed & Filho 1999; Rasheed 1999; Plus et al. 2003;
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Spalding et al. 2003; Cunha et al. 2004; Frederisksen et al. 2004b; Morris &

Virnstein 2004), in some instances it may take years for seagrass beds to recover

(Clarke & Kirkman 1989; Kirkman & Kuo 1990; Philippart & Dijkema 1995;

Rollon et al. 1999; Hemminga & Duarte 2000; Meehan & West 2000; Bryars &

Neverauskas 2004; Cunha et al. 2004; Frederiksen et al. 2004a; Whitfield et al.

2004; González-Correa et al. 2005; Neckles et al. 2005).

While the disturbance and loss of seagrasses is well documented, the

mechanisms of recovery and the factors that influence recovery are generally

less well understood. Seagrasses rely to varying degrees on vegetative (asexual)

or sexual reproduction for the maintenance of existing beds, with vegetative

propagation known to be an important mechanism for seagrass recovery and

spread (Patriquin 1975; Williams 1990; Thayer et al. 1994; Dawes et al. 1997;

Rasheed 1999; Rollon et al. 1999; Meehan & West 2000; Cunha et al. 2004;

Kendall et al. 2004). Colonisation of new, unvegetated areas, or recolonisation

of disturbed areas that may be spatially separated from existing beds, will

depend on species-specific dispersal capabilities and the success of

recruitment. Seagrass recovery is most often dependent on the presence of

water and sediment of a quality suitable for seagrass growth and survival.

Rasheed (1999) found that small-scale disturbances (0.25 m2, i.e. the size of

disturbance corresponding to anchoring damage, propeller scars, grazing or

burrowing) in beds of Z. capricorni at sites in Cairns Harbour, Queensland,

recovered in terms of above-ground biomass and shoot density within

c. 12 months through vegetative propagation from surrounding rhizomes.

There was no significant recovery by sexual means, although flowering and

fruiting were observed; seeds stored in the sediment played no role in recovery.

Where large-scale losses of seagrasses occur and there are few adult plants

remaining, or when the below-ground root and rhizome system suffers damage

or the environmental conditions are unsuitable over a protracted period, the

ability of the plant to produce new growth is severely impacted, and, depending

on the species concerned, seagrass recovery may take extended periods,

especially if recovery is dependent on recolonisation by propagules (Zieman

1976; Birch & Birch 1984; Fonseca et al. 1987; Peterson et al. 1987; Clarke &

Kirkman 1989; Shepherd et al. 1989; Walker et al. 1989; Dawes et al. 1997;

Hawkins et al. 1999; Rasheed 1999; Coles et al. 2003; Olesen et al. 2004;

Neckles et al. 2005). In Tauranga Harbour, for example, disturbance of an area

of seagrass bed caused by the laying of a pipeline was still evident some 20 years

later (Park 1999a). In some cases, the seagrasses may never be able to recover.

For example, an area of Z. capricorni beds in Cairns Harbour, Queensland,

which was dredged in 1982 to depths greater than the limit of the seagrass light

requirements, has shown no recovery to date (Rasheed & Roelofs 1997, cited in

Rasheed 1999).
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8. Considerations for management
of seagrass

The shallow-water coastal and estuarine areas around New Zealand are subject

to increasing pressures as a result of population growth and increased demands

for coastal developments (e.g. marine farms and marinas) and increased

development in the surrounding catchments (e.g. forestry, agriculture and

urban development). As human pressure grows in these areas and their

surrounding catchments, the degradation and loss of the remaining areas of

seagrass habitat is likely to continue. Land-use practices and coastal

management will require careful consideration to minimise the adverse impacts

of increasing population and development pressure. The challenge is to

effectively co-ordinate seagrass management and conservation actions, and to

reduce the increasing pressures on these valuable components of estuarine and

coastal ecosystems.

This report has focused on seagrass; however, the management of seagrass is

inextricably linked with the management of estuaries and coastal ecosystems.

Seagrass is one component of a wider system of communities and habitats;

therefore, there needs to be a holistic, ecosystem-based approach to the

management of estuarine and coastal systems and their catchments, which will

address the issues of seagrass as well as other sensitive and valuable estuarine

and coastal communities.

8 . 1 T H E  L E G I S L A T I V E  F R A M E W O R K

The Resource Management Act 1991 (RMA) is the principle legislation

governing the management of natural and physical resources, including the

coastal environment, with the exception of fisheries. The key themes

underpinning the RMA are the sustainable management of natural and physical

resources, the integrated management of resources, and the control of adverse

effects of activities on the environment.

Under the provisions of the RMA, the Minister of Conservation and the

Department of Conservation, Regional Councils and Territorial Local

Authorities jointly manage the coastal environment. The Minister of

Conservation is required to prepare a New Zealand Coastal Policy Statement

(DOC 1994), which states the policies that have been developed to achieve the

purpose of the RMA in relation to the coastal environment. Seagrass does not

receive specific reference in the Coastal Policy Statement. However, the

protection of areas of significant indigenous vegetation is identified as a

national priority for the preservation of the natural character1 of the

environment. This is to be achieved through the protection of ecosystems that

are unique to the coastal environment and vulnerable to modification

1 Natural character refers to the natural qualities of the coastal environment, including natural

elements of ecological, physical, spiritual, cultural or aesthetic values.
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(including estuaries and coastal wetlands), and by minimising the disturbance

to other areas of predominantly indigenous vegetation. The protection of the

integrity, functioning and resilience of the coastal environment, in terms of the

dynamic processes and features arising from the natural movement of

sediments, natural movement of biota, natural substrate composition, natural

water quality, natural biodiversity, productivity and biotic patterns, as well as

the intrinsic values of ecosystems, is also identified as a national priority for the

preservation of natural character of the coastal environment. The maintenance

and enhancement of water quality is identified in the Coastal Policy Statement

as one of the matters to be considered with regard to the preservation of the

natural character of the coastal environment. All of these provisions have the

potential to provide for the protection of seagrass habitat in the coastal marine

area.

Regional Councils are required to prepare Regional Coastal Plans that set out

how they will carry out their resource management responsibilities in the

coastal marine area of the region. In the coastal marine area, Regional Councils,

in conjunction with the Minister of Conservation, have responsibility for land

and associated natural and physical resources, the occupation of space and the

extraction of material, any actual or potential effects of the use, development or

protection of land, and the discharge of contaminants. Regional Councils have

only limited management responsibility for the use of land. Control may be

exercised for the purpose of soil conservation and the maintenance and

enhancement of the quality of water in water bodies and coastal water. The

principal functions of Territorial Local Authorities relate to the control of the

effects of land-use and subdivision of land. Integrated management of natural

and physical resources is a primary function of Regional Councils and

Territorial Local Authorities.

The RMA requires the assessment of any actual or potential environmental

effects of particular activities that are the subject of resource consent

applications. This includes assessment of the effects of a proposed activity or

development in the coastal marine area that may affect a seagrass bed, and the

ways in which any adverse effects may be mitigated. The Fourth Schedule of the

RMA sets out the matters to be included in an environmental assessment,

including any actual or potential environmental effects of the proposed activity;

possible alternative locations or methods for undertaking the activity if it will

result in any significant adverse effect on the environment; a description of the

mitigation measures (safeguards and contingency plans) to be undertaken to

help prevent or reduce the actual or potential effects; and how effects will be

monitored in areas where the scale or significance of the activity’s effects are

such that monitoring is required. Measures to help prevent or reduce the actual

or potential effects and to protect seagrass functions and values can typically

include buffer zones to maintain distance between the seagrass habitat and the

works being undertaken; design modifications to reduce impacts; scheduling of

works that increase turbidity to periods when baseline turbidity is naturally

high or to particular current directions or tidal phases; scheduling of works to

avoid ecologically important periods; and rehabilitation of the habitat after the

completion of works (Coles & Fortes 2001). If a consent authority decides to
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grant consent for an activity, it may do so subject to conditions (undertakings

required of the applicant). These may include a requirement for a financial

contribution, which under the RMA includes a contribution of money, land,

works (including the protection or enhancement of any natural or physical

resource) or services for purposes specified in the relevant plan, including the

purpose of ensuring positive effects on the environment to offset any adverse

effects; a bond in respect of the performance of any one or more of the

conditions of the consent; and a requirement to undertake a programme of

monitoring. With respect to the discharge of contaminants, the consent

authority may require the adoption of the best practicable option, or other

alternatives, including a condition requiring the observance of minimum

standards of environmental quality, to prevent or minimise any actual or likely

adverse effect on the environment. Regulatory authorities may require the

development of environmental management plans for developments. These

plans could include limits on measurable environmental parameters, such as

light loss, turbidity and water flow, and identify changes that if exceeded act to

trigger a management action or even cessation of the work to protect seagrass

(see Coles & Fortes 2001).

Other agencies also have responsibilities for managing aspects of the coastal

environment. This includes, for example, the Minister of Fisheries and Ministry

of Fisheries, which are responsible for the maintenance of the sustainable use of

fisheries resources and fisheries habitat management; and the Maritime Safety

Authority, which is responsible for dealing with marine pollution prevention.

In the context of the effective management and conservation of seagrass habitat

there are a number of key issues that need to be considered by management

agencies. These are discussed in the following sections.

8 . 2 I N T E G R A T E D  C A T C H M E N T  M A N A G E M E N T

High water quality is essential to the health of seagrass. The key focus for the

management of seagrass should therefore be a comprehensive approach to

maintaining and improving estuarine and coastal water quality, specifically by

reducing inputs of sediment and nutrients. Improved management of

catchment land-use practices and catchment run-off is critical for achieving a

sustained improvement in estuarine and coastal water quality by ensuring that

erosion and contaminant (sediments and nutrients) run-off from catchments

and rivers is minimised.

Management needs to focus on better integration of land, stream and estuary-

based activities, thereby recognising and accommodating the interdependence

of terrestrial, freshwater, coastal and marine systems. This will require better

integration between management agencies and their respective responsibilities

to ensure a co-ordinated, cross-sectoral and ecosystem-based approach to

managing the coastal environment. Integrated catchment management

programmes are likely to be one of the best management measures for

successful seagrass protection, given that seagrass is at the downstream end of

catchment run-off.
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8 . 3 M A N A G E M E N T  O F  A C T I V I T I E S  I N  T H E

C O A S T A L  M A R I N E  A R E A

In-water and shoreline developments (e.g. marinas, canal developments and

causeway construction), works such as the dredging of navigational channels,

and boating activities need to be carefully managed to minimise direct physical

impacts on seagrass habitat. Seagrass beds outside the immediate footprint of

developments may also be affected by changes in water quality and sediment

transport patterns; therefore, there needs to be adequate consideration of

potential off-site effects. Proper management of seagrass habitat requires a

greater awareness and understanding of the consequences of alterations to, and

activities within, estuarine and coastal systems.

The distribution and extent of seagrass habitat and the ecosystem values of that

habitat represent the basic information required by resource managers to aid

planning and development decisions that will minimise impacts on seagrass

habitat (Coles & Forte 2001; Coles et al. 2003). To adequately assess the effects

of a development proposal on seagrass, resource managers require a detailed

understanding of the site-specific significance of the seagrass habitat, which

includes consideration of ecological, social, cultural and economic significance,

and the implications of any loss or degradation should the development

proceed. Such understanding is generally not available.

Walker et al. (2001) recommend that assessments of seagrass significance

should include:

• Identification of the ecological functional roles of seagrass in the area of the

proposed development site

• Quantification of the loss of ecological functional roles resulting from any

historical seagrass losses in the area

• Determination of the amount of loss of seagrass that can be sustained

without significantly impairing the ecological functional role of seagrass in

the area

• Quantification of the loss of ecological functional role in the area resulting

from previous activities

• Quantification of the loss of ecological functional role that can be potentially

replaced by mitigation

Such assessments need to be undertaken within the context of natural changes

in the area and distribution of seagrass, and not just the anthropogenic losses of

seagrass beds. The relative significance of seagrass habitat is likely to vary

considerably within and between estuarine and coastal systems, further

complicating management decisions.

Identification and quantification of the significance of seagrass habitats, and the

costs associated with loss or degradation of these habitats, is critical if resource

managers are to be better informed about the consequences of management

decisions. Generic arguments that seagrass habitat is important are often

insufficient to convince potential developers and other users that their

protection is warranted. Monetary valuation techniques can be used to provide

an economic basis for seagrass protection. However, many of the values

associated with the benefits of seagrass habitat are indirect or non-use, cannot
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readily be quantified, and are thus rarely assigned any monetary value. This is in

contrast to the benefits of development proposals, which are more easily

quantified by developers and are recognised as they yield commercial gains and

revenues. As a consequence, the total costs of a development in terms of the

loss of ecosystem services (i.e. loss of indirect or non-use benefits) often go

largely unacknowledged and are frequently underestimated by resource

managers.

8 . 4 W A T E R - Q U A L I T Y  M A N A G E M E N T

The focus for a number of international seagrass management responses has

been on improving water quality by controlling sediment and nutrient loads

from catchments to achieve water-quality standards that correlate with healthy

seagrass beds (e.g. Johansson & Greening 2000; Batiuk et al. 2000; Morris et al.

2002; Orth et al. 2002; Biber et al. 2003a,b). The underlying assumption is that

if water quality is maintained or enhanced, the seagrass habitat will persist.

In Tampa Bay, Florida, for example, local, state and federal agencies working co-

operatively through the Tampa Bay National Estuary Program have agreed to

adopt nitrogen-loading targets for the Bay, based on the water-quality

requirements for seagrass species (Johansson & Greening 2000). A long-term

goal to restore 95% of the seagrasses observed in 1950 has been identified,

which will require preservation of c. 10 400 ha of seagrasses present in the Bay

in 1992 and restoration of an additional 5000 ha. Field measurements indicated

that 20%–25% of surface irradiance would be required for sustained growth of

the seagrasses, and models were used to estimate the nitrogen-loading rates and

associated water-column chlorophyll-a concentrations required to maintain

irradiance levels at the maximum depth of seagrass growth in 1950. To achieve

the long-term seagrass restoration goal, a 7% increase in nitrogen loading

associated with a projected 20% increase in the watershed human population

over a 20-year period will need to be offset. Stakeholders involved in the

Program have identified and committed to specific nitrogen load reduction

projects to ensure nitrogen management targets and seagrass restoration goals

are met. In the Indian River Lagoon, Florida, the goals of the seagrass

restoration programme include efforts to maintain and enhance the water

quality necessary for seagrass health (Morris et al. 2002). The minimum light

requirement of seagrasses in this lagoon is 25% of surface light. This light

requirement is compared with the amount of light reaching a target depth for

seagrass restoration of 1.7 m (15%); the difference indicates the level of water-

clarity improvement that is required to ensure the sustainability of seagrasses to

the target depth. The minimum light requirements for seagrasses will be used to

establish pollution-load reduction guidelines.

The ‘Australian and New Zealand Guidelines for Fresh and Marine Water

Quality’ (ANZECC & ARMCANZ 2000a) promulgates a water-quality

management framework that could be utilised to protect seagrass in estuarine

and coastal ecosystems in New Zealand. The framework includes a requirement

for the identification of ‘environmental values’, which are particular values or

uses of the environment (e.g. aquatic ecosystems, recreation and aesthetics,
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cultural and spiritual) that require protection from the effects of contaminants

and inappropriate land management practices. Once the environmental values

to be protected have been identified, the level of protection required to

maintain the environmental or water quality needs to be determined.

Management goals that reflect the specific threats to the established values, the

desired levels of protection for aquatic ecosystems, and the key attributes of the

resource that must be protected can then be formulated; for example, a

management goal could be to improve seagrass habitat condition and

productivity. Management goals should be achievable and measurable, and

represent the key objectives that should be achieved through management

plans.

Associated with each environmental value are guidelines or ‘trigger values’ for

substances that might potentially impair water quality (e.g. nutrients, sediments

and pollutants). These are recommended numerical concentration levels or

descriptive statements that will support and maintain the designated

environmental value of a particular water body. If these values are exceeded,

which is indicative that there may be a potential environmental problem, they

may be used to trigger or initiate further investigation or some form of

management response. ‘Water quality objectives’ are numerical concentration

levels or descriptive statements that are specific or detailed targets agreed

between stakeholders or set by local authorities, and which become the

indicators or measures used by resource managers to measure and report on

performance.

The ‘Australian and New Zealand Guidelines for Fresh and Marine Water

Quality’ (ANZECC & ARMCANZ 2000a) include default low-risk guideline

trigger values for a number of physical and chemical stressors (e.g. chlorophyll-

a, nutrients, turbidity and suspended particulate matter) for estuaries and

marine ecosystems around Australia. However, none of these have currently

been identified for New Zealand estuarine and marine ecosystems.

Additional research and evaluation is needed to develop regional or local

minimum water-quality guidelines to sustain seagrass growth and survival—

particularly with respect to optical water quality (e.g. chlorophyll, which is

indicative of nutrient loading, clarity and turbidity) (cf. Wazniak et al. 2005;

Western Australian Environmental Protection Authority 2005). This will require

information on the responses of seagrass to natural and human impacts

(particularly the physiological and biochemical responses of seagrass plants to

reduced light conditions), and identification of the current status and trend of

seagrass distribution, including determination of acceptable levels of change in

seagrass distribution and the environmental conditions that may cause these

changes. Seagrass trigger values will need to be scientifically defensible;

objective, explainable and understandable; ecologically achievable; incorporate

natural variability; incorporate both maximum (ideal) and minimum acceptable

levels; and incorporate statements for protecting seagrass diversity and

functional integrity.
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8 . 5 C U M U L A T I V E  E N V I R O N M E N T A L  I M P A C T S

While the impacts on seagrass associated with any individual activity or

disturbance may be relatively insignificant, the cumulative impacts of gradual,

incremental increases in catchment run-off, point-source discharges, and direct

physical damage, which are associated with growing population pressure on

the coast and increasing coastal development, present a serious threat to the

long-term survival of seagrass around New Zealand. Incremental increases in

impacts associated with population and development pressures must be

managed if some of the losses that have been reported internationally are to be

avoided.

There needs to be greater consideration of the cumulative environmental

impacts that can result from ‘small’ environmental decisions, by incorporating

an ecosystem-based approach to resource management decision-making. If a

seagrass bed is already stressed (e.g. due to non-point source run-off affecting

water quality), the dredging of a new channel or increased boat traffic to a new

marina may drive the nearby seagrass population beyond its physiological

limits, resulting in its degradation and, ultimately, potential loss.

Current decision-frameworks for managing coastal systems do not adequately

incorporate this ecosystem-based approach. As a consequence, there is the

potential for numerous relatively small-scale impacts on seagrass beds to be

occurring without any protection and mitigation to offset the cumulative

losses. Until an ecosystem-based perspective is taken, such cumulative losses

are likely to continue.

The absence of accurate inventories of seagrass habitat makes it difficult to

accurately assess the cumulative impact of human activity on them. Monitoring

changes in seagrass distribution and condition should enable early

identification of areas that may be under threat due to cumulative influences.

8 . 6 S E A G R A S S  H A B I T A T  I S  N A T U R A L L Y  V A R I A B L E

Seagrass communities are naturally spatially and temporally dynamic features of

estuarine and coastal ecosystems (Larkum & West 1983; Clarke & Kirkman

1989; Kirkman & Kuo 1990; Hemminga & Duarte 2000; Frederiksen et al.

2004b; Krause-Jensen, Almela et al. 2004). The distribution and abundance of

seagrass undergoes extensive natural fluctuations due to variable growth

conditions; for example, there may be significant declines following storm

events. Future efforts to manage and conserve seagrass will be dependent on a

comprehensive understanding of the natural patterns and scales of variability

and the causes of these changes, so that anthropogenic impacts on the seagrass

can be fully assessed.
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8 . 7 P R O T E C T I O N  O F  S E A G R A S S  H A B I T A T

Total protection from and avoidance of any impact is the best strategy to ensure

the persistence of seagrass habitat and its continued ecosystem value. Limited

areas of New Zealand seagrass habitat are provided with some measure of

protection under national legislation. For example, Farewell Spit in the north

west of the South Island, which includes extensive areas of intertidal seagrass

beds, is listed under the Ramsar Convention on Wetlands and is managed as a

Nature Reserve under the Reserves Act 1977. Whanganui (Westhaven) Inlet,

which is also in the north west of the South Island, and Te Angiangi in the

Central Hawke’s Bay, are both designated as Marine Reserves under the Marine

Reserves Act 1971, and include areas of seagrass habitat.

Regional Coastal Plans may identify different types of management areas in

recognition of the different values (e.g. ecological, cultural, scenic and

historical) associated with them2. When considering applications for resource

consents within these areas, Regional Councils may give priority to avoiding

adverse effects on the values associated with any area, and seagrass habitat may

receive some level of protection within these areas. For example, Kawhia and

Aotea Harbours on the west coast of the North Island have extensive areas of

seagrass habitat that are identified as specific values in designated ‘Areas of

Significant Conservation Value’ in the Waikato Regional Coastal Plan

(Environment Waikato 2001).

Where identified values for a specific management area include seagrass

habitat, there may need to be some further assessment of the relative

importance or value of different areas of seagrass habitat in terms of functional

differences, as not all are likely to be of equivalent ecological value. This might

include consideration of factors such as plant age, population structure, patch

and bed formation, location (e.g. whether a seagrass bed near the mouth of an

estuary has the same functional value as a seagrass bed near the head of an

estuary), and inter-linkages with adjacent habitats. In the absence of knowledge

and understanding of the different conservation, productivity, and other values

for each different area of seagrass habitat, management agencies assessing the

impacts of development and catchment run-off are likely to make uninformed,

and possibly inappropriate, assessments of which developments may occur.

In the future, a greater level of protection needs to be afforded to seagrass

habitat. Seagrass habitat should be set aside or incorporated into reserves or

other protected areas to ensure the long-term protection of some seagrass

habitat in a natural state. It will be important to ensure that there is adequate

representation of the full range of variation in seagrass communities in any

network of marine reserves, and to identify areas of seagrass habitat that are of

particular ecological significance or that may be considered particularly unique

2 New Zealand coastal policy statements may contain policies relating to areas in the coastal marine

area that have significant conservation value. The 1990 and 1992 draft New Zealand Coastal Policy

Statement (DOC 1990, 1992) included reference to the identification and protection of significant

conservation values, but this was not included in the final Coastal Policy Statement (DOC 1994).

Nevertheless, some Regional Councils have included these areas, either as ‘areas of significant

conservation value’ or by some other name, in their plans. For example, the Waikato Regional

Council identifies a number of areas of significant conservation values (ASCVs) in its Regional

Coastal Plan (Environment Waikato 2001).
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or rare. These might include, for example, the remaining areas of subtidal

seagrass habitat, areas of very large intact seagrass beds (e.g. Farewell Spit) and

the seagrass habitat found in some of the fiords (G. Inglis, NIWA, pers. comm.

December 2003). There has been very little study of these seagrass habitats, and

they could have quite different functional significance from the intertidal

estuarine seagrass habitat, which has largely been the focus of studies in New

Zealand to date.

While seagrass may be protected within the boundaries of marine reserves or

other protected areas, this is to little avail if the adjacent waters are

inadequately managed. Many of the threats to seagrass come from remote

sources (e.g. catchment run-off), and there are currently limited mechanisms

available for dealing with activities that may affect sites but occur outside the

reserve boundaries. This reinforces the importance of adopting a cross-sectoral

approach to the management of seagrass habitat. It is also important to identify

and implement performance indicators against which to measure the success

(or otherwise) of the protection management (Leadbitter et al. 1999; Coles &

Fortes 2001).

8 . 8 E N H A N C E M E N T ,  R E S T O R A T I O N  A N D
M I T I G A T I O N

Once lost, seagrass may not readily recover naturally. The plants require

specific environmental conditions that are often lost with the decline of the

seagrass, and locations that once supported abundant seagrass beds may

become unsuitable as habitat for seagrass. As a consequence of the recognised

importance of seagrass habitats and their associated communities and the

significance of their loss, opportunities for seagrass enhancement, restoration

and mitigation have been receiving increasingly greater attention

internationally (Fonseca 1992; Kirkman 1992; Fonseca et al. 1998; Lord et al.

1999; Hemminga & Duarte 2000; Christensen et al. 2004).

It is important to define what is understood by enhancement, restoration and

mitigation:

• Enhancement is the improvement, augmentation or rehabilitation of a

degraded or affected area, with the expectation that it will result in the

return of seagrass, improve the condition of existing seagrass, and improve

ecosystem function

• Restoration is the return from a disturbed or totally altered condition to a

pre-existing natural or altered condition

• Mitigation is the actual restoration, creation or enhancement of functionally

equivalent seagrass habitat to compensate for seagrass habitat loss as a result

of development activities, or more broadly to provide some form of

compensatory effect (Turner 2000)

There is no one method by which seagrass restoration is undertaken, and a

variety of trials have been carried out internationally with varying degrees of

success (Kenworthy & Fonseca 1992; Davis & Short 1997; Balestri et al. 1998;

Harwell & Orth 1999; Lord et al. 1999; Orth et al. 1999; Calumpong & Fonseca
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2001; Balestri & Bartini 2003; Peralta et al. 2003; Christensen et al. 2004).

Conventional planting and transplanting techniques that have been used for

terrestrial plants are not successful with seagrasses, and while planting seagrass

is not technically complex, seagrass habitat restoration is an inherently

complicated process that has not yet been shown to offset net habitat losses.

Successful seagrass restoration is contingent on good water quality, as well as

appropriate site selection, planting techniques, monitoring and the

implementation of appropriate corrective actions when a project is not

progressing towards clearly defined goals (Thorhaug 1985; Fonseca et al. 1987,

1988, 1994, 1998; Fonseca 1989a, 1992; Thom 1990, 2000; Hawkins et al. 1999;

Lord et al. 1999; Kentula 2000; Short et al. 2002).

Attempts at restoration are unlikely to be successful if environmental

conditions are unfavourable, and the success of any seagrass restoration will be

dependent on a physical environment that will not only ensure initial

establishment, but will also support long-term growth and survival. The

parameters of the restoration site must also closely match those of the donor

site if restoration is to be successful (Fonseca et al. 1998; Christensen et al.

2004). Programmes to improve water quality and habitat conditions

(e.g. sediment characteristics, depth and site hydrodynamics), thereby

enhancing the processes of natural recolonisation, should be central

components in any restoration effort. Excess sediment accretion or loss must be

rectified to prevent transplants from being smothered or washed away and high

sediment levels in the water column, which would inhibit photosynthetically

available radiation. The transplants may also be smothered by epiphytes if there

are high concentrations of nutrients in the water column. While the restoration

of seagrasses is at the stage where technologies are available, overcoming

inadequate water-quality conditions is the greatest obstacle to seagrass

restoration worldwide (Spalding et al. 2003).

The focus of many restoration efforts has been largely on restoring persistent

vegetative cover; there needs to be a shift in emphasis towards restoring

ecological functions, especially those perceived as ecosystem services (Cairns

2000; French-McCay & Rowe 2003; Peterson & Lipcius 2003). Provision of

physical habitat structure does not necessarily guarantee the return of normal

function (functional equivalency), and even where there is recovery, the rate of

return of function may lag structural restoration by many years (Fonseca et al.

1994, 1998; Fonseca, Kenworthy et al. 1996; Fonseca, Meyer et al. 1996;

Sheridan 2004). Many seagrass restoration efforts have not consistently restored

full functionality equivalent to that which has been lost (Homziak et al. 1982;

McLaughlin et al. 1983; Smith et al. 1988; Fonseca et al. 1990; Bell et al. 1993;

Brown-Peterson et al. 1993; Race & Fonseca 1996; Williams & Davis 1996;

Sheridan 2004). Seagrass restoration efforts often result in the development of

seagrass communities that have limited productivity, sparser growth and lower

diversity, in areas where conditions are inadequate for the successful

establishment of the intended community. Designing seagrass beds to maximise

functional equivalency requires a detailed knowledge and understanding of the

mechanisms that result in a particular community and levels of secondary

productivity (Williams & Heck 2000). Furthermore, there is often a net loss in

functional seagrass habitat or, at best, a trade-off involving the exchange of an

existing system with that of an ecologically dissimilar one, often not even on a
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1:1 spatial scale (Fonseca 1992; Fonseca et al. 2000). Restoration of seagrass

habitat should not, therefore, be seen as a viable alternative to management

actions focusing on avoidance and minimisation of seagrass-bed impacts.

Where development that will result in the loss of seagrass habitat proceeds,

there should be a requirement for compensatory mitigation to offset

unavoidable impacts on seagrass that remain after all appropriate and

practicable avoidance and minimisation. This should not necessarily mean the

substitution of naturally unvegetated areas for vegetated habitat, as this

typically creates only a transient seagrass bed, and does not necessarily improve

existing habitat functions. Instead, a mitigation programme may consider

enhancing other components of the estuarine habitat to preserve some of the

identified ecosystem values provided by the seagrass habitat under threat.

Mitigation programmes need to be carefully and thoroughly planned,

incorporate clearly defined ecological goals and objectives within an adaptive

management framework, and be systematically evaluated against scientifically

robust performance criteria (Pastorok et al. 1997; Hackney 2000; Kentula 2000;

Short et al. 2000; Thom 2000; Kirsch et al. 2005; Thom et al. 2005). Seagrass

restoration projects that lack clearly defined goals and objectives are less likely

to be successful, and in many cases it may be impossible to gauge success in the

absence of clearly defined performance criteria. The low success rate of

international mitigation projects has been attributed to failures in the planning

process as much as to any other causes (Fonseca et al. 1998).

One approach to offsetting the degradation or loss of seagrass habitat that has

been adopted internationally but not yet in New Zealand is the application of

mitigation banking (Turner 2000). Mitigation banking is a system whereby the

benefits attributable to the restoration, enhancement or creation of ecosystems

or habitats are quantified, and the agency or group producing them receives

mitigation credits from the appropriate regulatory authority (Etchart 1995).

These credits are then placed in a mitigation bank account, from which

withdrawals can be made. Thus, when a project is proposed that involves

unavoidable losses, these losses or debits are quantified using the same method

that was used to determine credits, and a withdrawal equal to that amount can

be debited against the mitigation bank account. This system is controversial,

and not without limits and risks. However, while existing natural ecosystems or

habitats should not be traded indiscriminately for the construction of artificial

systems in order to allow use and development to proceed, mitigation banking

does have the potential to create a form of tradable permit, which is in

accordance with the philosophy of utilising economic instruments as a means

of achieving the purpose of the RMA (Turner 2000).

While restoration should not be considered as an option over preservation,

restoration techniques for areas once supporting seagrass growth should be

further developed and encouraged in order to augment available habitat. There

have been few direct attempts to restore seagrass systems in New Zealand, and

they have been small-scale and of limited success in terms of seagrass survival

(e.g. Turner 1995). Further research is needed to address issues central to

successful restoration projects. This should include site selection and

preparation, including the rehabilitation of environmental conditions that

existed prior to seagrass loss; appropriate planting methodologies, and methods
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to accelerate natural recruitment processes; selection of donor stocks to

maximise chances of success and minimise damage to donor beds; methods to

improve the long-term survival, growth and coverage rates of seagrass; and the

ecological function of restored seagrass habitat. It is important that any

experimental or pilot-scale seagrass restoration projects should be monitored

and their performance evaluated to enable testing of the efficacy of the

proposed restoration; this can then be followed by full-scale implementation of

the most successful technique.

9. Considerations for monitoring
seagrass

Monitoring is an important aspect of managing any natural ecosystem. There is

a need to regularly assess and quantify the status and trends of seagrass

distribution, extent, abundance and condition in estuarine and coastal areas on

a national, regional and local basis on both seasonal and inter-annual time-

scales. This requires the development of appropriately designed and

implemented long-term monitoring programmes for the measurement of key

parameters to assess changes in seagrass distribution, extent, abundance and

condition. An understanding of the natural range of and patterns of variation in

seagrass parameters in both space and time is essential for distinguishing

anthropogenic change from the natural background levels of change. Without

this understanding, it will not be possible to interpret changes in the system

and assess the need for management, or reach decisions on an appropriate and

robust management response. Resource managers need information on what

levels of change are likely to be ecologically significant. Monitoring methods

must be capable of detecting and estimating the sizes of realistic levels of

change against the background of natural spatial and temporal variability, at an

appropriate scale and with documented reliability and precision.

Monitoring enables early detection of change, thereby enabling resource

managers to adjust management practices and/or take remedial action earlier

for more successful results. Monitoring also allows resource managers to

evaluate the success of policies and rules that have been made to mitigate or

avoid adverse effects. While there is no formal programme in place for

monitoring long-term changes in seagrass distribution, extent, abundance and

condition, the Ministry for the Environment has proposed that the extent and

condition of seagrass beds be monitored as one of the national environmental

performance indicators for the marine environment (MfE 2001). Limited

monitoring of seagrass is also undertaken as part of resource consents.

Various methods are available to monitor changes in seagrass distribution,

extent, abundance and condition, but the limitations of each method need to be

understood, and they should only be used to answer well-defined questions. A

variety of monitoring methods are well documented in a number of readily

available publications (Phillips & McRoy 1990; Coles et al. 1996; Kirkman 1996;
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Lee Long et al. 1996; English et al. 1997; Thomas et al. 1999; Short & Coles

2001; Borum et al. 2004).

SeagrassNet is a global monitoring initiative that was established in 2001 to

investigate and document the worldwide status of seagrass resources

(SeagrassNet n.d.). The programme started with an ongoing pilot study in

several countries in the western Pacific. Since then, a globally applicable

monitoring protocol and web-based data reporting system have been

established. The ultimate aim of the programme is to increase knowledge and

public awareness of the importance of seagrasses and coastal management

issues, and to develop community participation and ownership, as well as long-

term, broad-scale monitoring of seagrass habitat, seasonal patterns, condition

and trend data (McKenzie & Campbell 2002).

The intent of this report is not to provide coverage of the full range of

monitoring methods for seagrass, but to identify some of the key considerations

in the development, implementation and interpretation of a programme for

monitoring seagrass. The appropriate seagrass parameters to be monitored at a

particular site will be project-specific and dependent on why and where the

monitoring is being conducted, as well as by whom. Sampling designs for

seagrass monitoring programmes, as well as the location and number of sites,

etc., should be tailored to the question being asked of the data, the precision

required and the parameters of the habitat being monitored, with due

consideration of cost-benefit, logistical and safety issues. To develop an

effective monitoring programme, intensive data collection is likely to be

required in baseline studies, to provide initial estimates of spatial variability.

Monitoring programmes need to be based on a sound understanding of

variability and incorporate sufficient levels of sample replication to enable

changes that are ecologically meaningful to be detected with reasonable

statistical power. It is also important to identify the amount of change, or to

define any persistent trends (e.g. change in one direction over a number of

successive sampling periods) that will be used to initiate a management

response (Lee Long et al. 1996). Simultaneously, data should be collected on

physical parameters that are important to seagrass growth and survival and

which may also be useful in interpreting changes in seagrass (e.g. light

(turbidity and depth), sediment characteristics and nutrient levels).

Careful consideration needs to be given to the development of a suitable

quality-assurance process to ensure consistent sample collection, handling and

processing protocols. Standardised data recording and database management

procedures are also important to ensure that all the data generated are accurate,

compatible and representative of the actual samples, and that estimates of error

and reliability accompany each seagrass parameter measured. Consideration

should also be given to the presentation, including techniques of integrating

spatial and temporal data, and the processing, analysis, interpretation, storage

and archiving of data. This should include the generation of associated

procedural information (metadata).
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9 . 1 I S S U E S  O F  S C A L E

The spatial arrangement of seagrass habitat varies over scales ranging from

millimetres to kilometres (Robbins & Bell 1994; Turner et al. 1996). ‘Seagrass-

landscapes’, extending over kilometre-wide scales and often containing

important topographic heterogeneity, are made up of seagrass patches and beds

at the scale of metres to tens of metres. At the centimetre to millimetre scale,

individual shoots are composed of multiple blades of contrasting sizes, ages,

epiphytic populations, etc. In addition, seagrass can change in different ways

both spatially and temporally. There may be changes in bed location, depth

distribution, area or shape, shoot density, biomass, plant productivity, or a

change in the associated flora or fauna; or there may be a combination of any or

all of these at small or large spatial or temporal scales (Coles et al. 1996; Lee

Long et al. 1996). These changes may occur naturally and on a regular seasonal

or annual basis.

Seagrass can be monitored at a range of spatial and temporal scales. For

example, spatial scales ranging from less than 1 m2 to greater than 109 m2 and

temporal scales ranging from minutes to decades may provide meaningful

information depending on the question being asked. The scale of the approach

(i.e. the spatial and temporal scales adopted) will depend on the question of

interest, as no single scale is appropriate or sufficient for all approaches to

seagrass monitoring and management, and no one approach is applicable over

all scales (Virnstein 1995, 2000). For example, the question of ‘How much

seagrass is present in the area?’ would require different approaches depending

on whether the question was in relation to a national scale, regional scale,

estuary or sub-estuary scale, a particular bay in an estuary, or to a particular

seagrass patch. There is no reason to expect that patterns found at any one scale

are transferable to other scales. For example, the dynamics of seagrass beds

(e.g. growth, grazing, biomass development and flowering) cannot be

examined by extrapolating processes examined at small scales (< 1 m2) to the

entire bed (Duarte & Kalff 1990; Vidondo et al. 1997). Effective management

requires accurate and timely information at varying scales. If adequate

consideration of scale is not incorporated into the design of a seagrass

monitoring programme, then errors of measurement, inappropriate techniques

for assessment, implementation of wrong solutions and a lack of understanding

of the system under study can result (Virnstein 2000).

Often a hierarchy of information is required. There are at least four scales of

approach in seagrass monitoring programmes, from the ‘broad-scale big

picture’ to the ‘finer scales with more detail’ (Virnstein 2000).

Landscape (macro)-scale approaches provide information on large-scale

changes (many kilometres) over multi-year time frames. Examples of large-scale

questions include ‘What is the total area of seagrass in the area of interest at a

given time?’ and ‘How has the total area of seagrass changed over time?’ For

these types of questions, remote-sensing mapping methods are generally

appropriate, which involve satellite imagery or aerial photography, on-site

ground-truthing surveys, photo-interpretation and the delineation of seagrass

areas (e.g. Israel & Fyfe 1996; Wyllie et al. 1997; Kendrick et al. 1999, 2002).
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Such landscape-scale maps provide powerful tools for presenting large-scale

patterns and detecting long-term changes in abundance and distribution. These

maps can be used to help identify ‘healthy’ areas that may deserve special

protection efforts and potential ‘problem’ areas that may require further

investigations and may be of management concern. However, these maps

cannot be scaled down to finer scales, and they provide no basis for attributing

any observed change to a specific impact (Lee Long et al. 1996).

The scale of the mapping is important and will be dependent on the objectives

of the project and the detail to be shown. Scale is a compromise between

resolution of the different ground signatures, coverage of the study area,

including land features sufficient for horizontal control, and cost (Dobson et al.

1995). The minimum mapping unit is quite large (e.g. 0.1–0.2 ha with 1:24 000–

1:10 000 scale photographs). From aerial photographs, it is difficult to map

features less than a few metres in size or to accurately locate the edge of

seagrass beds or map very sparse beds (Environment Waikato n.d.). These

methods are not, therefore, suitable for detecting local or short-term changes,

as these are indistinguishable from locational and interpretative errors.

Medium (meso) approaches provide information on medium-scale changes

(tens or hundreds of metres) over shorter time-scales (months). An example of a

medium-scale question is ‘What is the percentage cover of seagrass in a selected

area of seagrass bed at a given time?’ For these questions, repeated monitoring

of fixed transects positioned across a seagrass bed, using standardised

quantitative techniques, can detect local changes in factors such as tidal

elevation, percentage cover, shoot density, biomass and canopy height over

short time-scales (e.g. Carruthers & Walker 1999; Kirkman & Kirkman 2000;

Morris & Virnstein 2004). This provides an early indication of whether the

condition of the seagrass bed is stable, improving or declining, and the

magnitude of any change.

Although fixed transects are powerful for monitoring change within part of a

bed, the results from a single transect cannot be scaled up to represent changes

over the whole bed or for comparisons among beds. While it is invalid to

extrapolate from a line to an area, the power of spatial inference increases with

multiple transects (Kirkman 1996; Virnstein 2000; Duarte & Kirkman 2001). For

example, if a section of an estuary or seagrass bed is sampled with multiple

randomly located transects, then generalisations can be made about the wider

area. However, there must be sufficient replication to give good estimates of

the particular variables the study wants to estimate, or to give powerful tests if

it is a hypothesis-testing study.

Site-specific (micro)-scale approaches typically provide information on small

changes (metres to tens of metres). An example of a site-specific scale question

is ‘What are the processes governing the establishment, maintenance and

mortality of patches at a site?’ These approaches typically involve mapping of

sites within one bed or a small number of beds that are separated by distances of

metres or tens of metres, and include the study of the dynamics of seagrass

patches across a small area of seafloor or the study of the spread of seagrass by

rhizome growth at the edge of the beds. For example, Olesen & Sand-Jensen

(1994b) studied seagrass patch dynamics in 120-m2 permanent plots to evaluate

recruitment and rates of expansion and mortality of patches. Fonseca & Bell
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(1998) mapped seagrass coverage within 50 m × 50 m permanent study sites,

which were chosen to represent a wide range of seagrass coverage, ranging

from continuous to widely dispersed, discrete patches in the seagrass

landscape. Spatially explicit data on seagrass presence/absence was produced

by direct field observations in 1-m2 areas centred on each intersection of 1-m2

grids positioned on the 50 m × 50 m study site (2500 grid-points).

Process-based approaches involve studies of relationships between plant

physiology (e.g. chlorophyll-a content, carbon:nitrogen:phosphorus ratios and

carbohydrate composition) and plant productivity and demography (e.g. leaf

growth, rhizome growth, photosynthetic potential, shoot density and biomass),

as well as the environmental parameters that affect the condition and

distribution of seagrass (e.g. light, turbidity, depth, temperature, salinity and

sediment nutrients) (Kennedy et al. 2004; Krause-Jensen, Marbà et al. 2004).

Examples of process-based questions include ‘How is the photosynthetic

capacity of seagrass shoots influenced by different levels of nutrient

enrichment?’ and ‘How do larval movement, water flow and seagrass structural

characteristics interact to determine the patterns of animal distribution in

seagrass beds?’

9 . 2 T H E  M O N I T O R I N G  P A R A D I G M

Many seagrass monitoring programmes focus on establishing long-term trends

in factors such as seagrass cover and biomass; consequently, they tend to focus

on the seagrass as an end in itself. In addition, the seagrass parameters

quantified in these programmes often tend to be based on convenience, rather

than any analysis of the ecological determinants of seagrass distribution or the

ecological role of seagrass habitat (Thomas et al. 1999). While this information

may serve to alert resource managers to large-scale or long-term changes in

seagrass distribution and condition, any subsequent management response

(e.g. policy development) will usually depend on more detailed, process-

orientated studies, which require a more conceptual understanding of seagrass

systems. In a recent review of seagrass monitoring programmes in Australia,

Thomas et al. (1999) reported that few monitoring programmes identify

specific management actions associated with the programme, and although

situations could be identified where management action had taken place

following a decline in seagrass cover, in most cases monitoring had been

instigated as part of a management response.

Thomas et al. (1999) have advocated the need to base monitoring programmes

on a conceptual understanding or models of the system being monitored, and

they suggest that a more conceptual approach to the design of monitoring

programmes can demonstrably add value to resource management. The

development of such conceptual models serves to clearly identify the individual

components and the links between seagrass and other components of the

system (e.g. major external driving forces; stressors; ecological effects caused

by the stressors; the ecological elements or attributes of the system; and critical

pathways or ecological linkages) (Thomas et al. 1999; Lee Long & Thom 2001).
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These models assist in identifying variables that are important to monitor, as

well as variables for which information is lacking or for which more extensive

monitoring is required, thus helping to clarify the monitoring needs. Equally

importantly, the process may result in the elimination of some potential

monitoring variables from a monitoring programme, for example if they are

shown to be too variable to be useful. The development of conceptual models

also allows more meaningful interpretation of the results of a monitoring

programme. Information on change in seagrass distribution, abundance, growth

patterns, productivity, morphology or nutrient content is of limited value

without an understanding of the likely influencing factors (Lee Long et al.

1996).

The ‘Australian Guidelines for Water Quality Monitoring and Reporting’

(ANZECC & ARMCANZ 2000b) also advocate the development of conceptual

process models as part of the development of monitoring programmes. These

models enable identification of the key processes of the system to be monitored

and help to define relationships such as ‘cause-and-effect’ and ‘how the system

works’, as well as the ‘why’ questions. These models may be as simple as a box

diagram illustrating the components and linkages in the system to be

monitored.

9 . 3 S E A G R A S S  A S  A N  I N D I C A T O R  O F  B I O L O G I C A L
H E A L T H  O F  E S T U A R I N E  E C O S Y S T E M S

Seagrasses have relatively high light requirements (15%–25% of light at the

water surface) compared with other estuarine primary producers

(e.g. phytoplankton and algae; typically < 5%), and are therefore susceptible to

low light stress (Dennison et al. 1993). Seagrasses are thus potentially sensitive

indicators of declining water quality in estuaries (e.g. increased light

attenuation as a consequence of increased turbidity and/or increased

phytoplankton biomass as a consequence of increased nutrient loading) and

have been proposed as ‘canaries’ or ‘barometers’ of estuarine change, providing

an early warning of decline in estuarine health (Biber n.d.; Dennison et al. 1993;

Biber et al. 2005). Generally, the presence of healthy seagrass communities

(and, implicitly, healthy seagrass plants) can be considered to be a useful

measure of the condition of estuarine and coastal ecosystems (MfE 2001; Biber

et al. 2005). However, the decline or loss of seagrass reflects lethal stress levels

and indicates that estuarine water quality has degraded to a point that there is

unlikely to be sufficient time for corrective action (Biber n.d.; Hemminga &

Duarte 2000; Biber et al. 2003b, 2005). Therefore, early detection of sub-lethal

stress thresholds in seagrass plants is important for the effective management

and protection of seagrass. There has been considerable interest internationally

in developing measures of seagrass health that reliably show measurable and

timely responses to environmental factors that cause sub-optimal seagrass

growth (e.g. light attenuation), as predictive indicators of ecosystem condition

and function (Kenworthy & Haunert 1991; Dennison et al. 1993; Neckles 1994;

Durako 1995; Longstaff & Dennison 1999; Wood & Lavery 2000).
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Biber et al. (2003a,b, 2005) have proposed a suite of potential predictive

indicators of seagrass health over a range of hierarchical levels:

• Bio-optical models of water quality in relation to habitat requirements (Biber

et al. n.d., 2003a,b, 2005; Gallegos 1994, 2001; Gallegos & Kenworthy 1996;

Kenworthy & Fonseca 1996; Zimmerman 2003).

• Growth measurements and morphological parameters (e.g. plastochrone

interval, plant morphometrics, shoot demographics, and shoot and rhizome

apical densities) (Durako 1995; Lee et al. 2004; Turner & Schwarz in press;

ST, unpubl. data).

• Biochemical markers of stress (e.g. amino acid composition, carbohydrate

concentrations, altered chlorophyll-a:chlorophyll-b ratios, and chlorophyll

fluorescence (e.g. Fourqurean at al. 1997; Beer et al. 1998; Ralph 1999; Beer

& Björk 2000; Durako & Kunzelman 2002; Enríquez et al. 2002; Biber et al.

2003a,b, 2005; Lee et al. 2004; Turner & Schwarz in press).

Further work is necessary to provide management-relevant information on the

selection and usefulness of a robust suite of indicators, in the context of how

stress regimes influence parameter values, variability and confidence limits. The

goal should be to produce regionally explicit subsets of these indicators to

address the particular management question of local or regional interest in the

most appropriate way.

The successful management and conservation, and ultimately restoration, of

Zostera in New Zealand will depend on the accurate assessment of seagrass

condition and an understanding of the complex causal relationships between

site characteristics and seagrass health and persistence. In ten estuaries around

the central North Island, a suite of potential indicators of sub-optimal health of

intertidal Zostera beds have been investigated, including photosynthetic

capacity, biomass, shoot density, plant morphology and nutrient content (A-MS

& ST, unpubl. data). The aim was to assess whether it is possible to detect sub-

optimal health before a given seagrass bed begins to undergo an irreversible

decline. Preliminary results show that photosynthetic capacity, total biomass

and shoot density are correlated in a consistent manner across the ten estuaries,

and that on the basis of these three parameters the estuaries could nominally be

separated into high, intermediate and reduced health categories. Further work

is required to relate these one-off measures to changes in environmental

conditions and to the trajectory of the seagrass response over a range of time-

scales. This work complements other studies in New Zealand (e.g. Schwarz

2004; Turner & Schwarz in press), including the establishment of criteria for

defining healthy seagrass habitat, understanding how seagrass may be employed

as an indicator of environmental health, the assessment of their ecosystem role

and an assessment of the potential for restoration.
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10. Information and education

The management of seagrass in New Zealand would benefit from appropriately

targeted information and advice on the role and importance of seagrass habitat,

the critical issues affecting seagrass, the need for effective management and

conservation, the range of damaging activities, and the actions that can be taken

to prevent or minimise such damage (see Coles & Fortes 2001; Lee Long &

Thom 2001).

Public education activities could usefully focus on what individuals can do to

reduce the impacts on seagrass from human disturbances. For example:

• Water quality: Coastal residents can prevent pollutants from entering storm-

water drains by not putting petrol, paints, solvents and garden chemicals

down storm-water drains. They can also reduce the non-point source

pollution reaching coastal areas, and seagrass beds in particular, by

following directions on lawn and garden products, and not over-using

fertilisers, pesticides or herbicides. Farmers can carefully manage farm

effluent and grazing to prevent run-off into waterways.

• Stream-edge management: Land-owners can plant a buffer strip of plants or

leave vegetation along streams and at the edge of estuaries to help stabilise

the banks, reduce sediment erosion and trap nutrients.

• Boating: Boat users should know the water-depth requirements of their

boat’s design, and if they observe seagrass in the prop-wash they should stop

the motor and drift or pole into deeper water. Boat users should avoid

anchoring in seagrass beds, as the anchoring of boats can cause significant

damage to seagrass.

• Physical disturbance: People should use caution when wading in shallow

water and avoid walking through seagrass beds, as this can damage the root-

rhizome system. Stock should be fenced out, so that they do not graze or

trample seagrass beds.

In recent years, the heightened interest in mangroves in northern New Zealand

estuaries and discussion of the advantages and disadvantages of this native

estuarine ecosystem component (Green et al. 2003) has highlighted the need to

increase public appreciation of the importance of estuarine and coastal

vegetation. Promotion of a sense of community stewardship and responsibility

for the conservation of estuarine ecosystems (Green et al. 2005) will ultimately

include considered management of seagrass. One international initiative to

foster such stewardship has been the establishment of community Seagrass-

Watch programmes in Queensland (McKenzie et al. 2000). Seagrass-Watch is a

community-based monitoring programme involving a partnership between

community groups and various government agencies, which developed out of

the recognition that limited resources made it logistically impossible for

government agencies alone to address state-wide enquiries about seagrass

issues. The programme has captured the interest of coastal communities

concerned about the condition and loss of seagrasses in their areas, and has
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motivated communities to play a primary information-gathering role by working

in partnership with government agencies. Seagrass-Watch collects data about

the condition and trend of near-shore seagrasses throughout Queensland and

provides an early warning of major changes in seagrass abundance, distribution

and species composition.

The potential for increased threats and pressures to New Zealand seagrass

systems presents a serious risk to their long-term survival. Greater education,

awareness and involvement in improving catchment land-use practices and

minimising the direct impacts of development in the coastal environment will

help to minimise impacts on seagrass. The protection of New Zealand’s seagrass

habitat will depend on improved community awareness, regional and long-term

planning, and active changes in catchment land-use practices to contain overall

downstream impacts and stresses.
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